256 research outputs found

    Comparison of laboratory and daily-life gait speed assessment during on and off states in parkinson’s disease

    Get PDF
    Accurate assessment of Parkinson’s disease (PD) ON and OFF states in the usual environment is essential for tailoring optimal treatments. Wearables facilitate measurements of gait in novel and unsupervised environments; however, differences between unsupervised and in-laboratory measures have been reported in PD. We aimed to investigate whether unsupervised gait speed discriminates medication states and which supervised tests most accurately represent home perfor-mance. In-lab gait speeds from different gait tasks were compared to home speeds of 27 PD patients at ON and OFF states using inertial sensors. Daily gait speed distribution was expressed in percentiles and walking bout (WB) length. Gait speeds differentiated ON and OFF states in the lab and the home. When comparing lab with home performance, ON assessments in the lab showed moderate-to-high correlations with faster gait speeds in unsupervised environment (r = 0.69; p < 0.001), associated with long WB. OFF gait assessments in the lab showed moderate correlation values with slow gait speeds during OFF state at home (r = 0.56; p = 0.004), associated with short WB. In-lab and daily assessments of gait speed with wearables capture additional integrative aspects of PD, reflecting different aspects of mobility. Unsupervised assessment using wearables adds complementary information to the clinical assessment of motor fluctuations in PD.This research was funded by Keep Control from the EU’s Horizon 2020 (H2020) research and innovation program under the Marie Sklodowska-Curie (MSCA-ITN-ETN), grant number 721577. No other financial support and funding for the preceding twelve months are applied

    Plasma neurofilament light chain: an early biomarker for hereditary ATTR amyloid polyneuropathy

    Get PDF
    BACKGROUND: Transthyretin amyloidosis due to V30M mutation (ATTR-V30M) is the most frequent hereditary ATTR amyloidosis. Besides neurophysiological measures, there are no biomarkers to detect preclinical disease or monitor disease progression. CSF or plasma neurofilament light chain (pNfL) have recently been considered sensitive biomarkers to quantitate neuro-axonal damage in several disorders of the peripheral and central nervous system. OBJECTIVE: Characterise plasma NfL levels in a series of untreated ATTR-V30M patients stratified by clinical severity using a cross-sectional retrospective study design. METHODS: Sixty ATTR-V30M patients and 16 controls from 2 independent cohorts were analysed for pNfL by single-molecule array assay (SIMOA) technique. Disease severity was assessed with Polyneuropathy Disability Score. RESULTS: pNfL is elevated in ATTR-V30M patients as a function of disease severity in both cohorts. Moreover, pNfL discriminates asymptomatic mutation carriers from early symptomatic patients (AUC = 0.97; p 66.9 pg/mL) also discriminates patients with sensory neuropathy from patients with motor neuropathy (AUC = 0.91; p < .01) with a sensitivity of 61.5% and a specificity of 92.3%. CONCLUSION: pNfL is an easily accessible biomarker to establish ATTR-V30M disease conversion and to monitor disease progression. pNfL could be used as efficacy measure of disease-oriented therapies in clinical and pre-clinical trials

    Preanalytical stability of plasma/serum brain-derived tau

    Get PDF
    INTRODUCTION: We investigated the effects of matrix type and reagent batch changes on diagnostic performances and longitudinal trajectories of brain-derived tau (BD-tau). METHODS: We evaluated (i) Cohort 1: paired EDTA plasma and serum from Alzheimer biomarker-positive older adults versus controls (n = 26); and (ii) Cohort 2: n = 79 acute ischemic stroke patients with 265 longitudinal samples across four time points. RESULTS: In Cohort 1, plasma and serum BD-tau were strongly correlated (rho = 0.96, p 99%) and correlations with CSF total-tau (rho = 0.93–0.94, p < 0.0001). However, absolute concentrations were ∼40% higher in plasma versus serum. In Cohort 2, first and repeated BD-tau measurements showed a near-perfect correlation (rho = 0.96, p < 0.0001), with no significant between-batch concentration differences. In longitudinal analyses, substituting ∼10% of the first-run concentrations for the remeasured values showed overlapping estimated trajectories without significant differences at any time point. DISCUSSION: BD-tau has equivalent diagnostic accuracies, but non-interchangeable absolute concentrations, in plasma versus serum. Furthermore, the analytical robustness is unaffected by batch-to-batch reagent variations. Highlights: Brain-derived tau (BD-tau) is a novel blood-based biomarker that quantifies tau protein of CNS origin. Effects of preanalytical handling procedures on the quality and reproducibility of BD-tau measures are unknown. In two cohorts of n = 105 participants, we compared BD-tau concentrations and diagnostic performances in paired plasma and serum samples, and evaluated impacts of batch-to-batch reagent variations. Paired plasma and serum showed equivalent diagnostic performances to separate amyloid-positive AD from amyloid-negative controls, indicating both can be used independently. Repeated measurements and longitudinal trajectories of plasma BD-tau were unaffected by batch-to-batch reagent variation

    A Systematic Review of Mosquito Coils and Passive Emanators: Defining Recommendations for Spatial Repellency Testing Methodologies.

    Get PDF
    Mosquito coils, vaporizer mats and emanators confer protection against mosquito bites through the spatial action of emanated vapor or airborne pyrethroid particles. These products dominate the pest control market; therefore, it is vital to characterize mosquito responses elicited by the chemical actives and their potential for disease prevention. The aim of this review was to determine effects of mosquito coils and emanators on mosquito responses that reduce human-vector contact and to propose scientific consensus on terminologies and methodologies used for evaluation of product formats that could contain spatial chemical actives, including indoor residual spraying (IRS), long lasting insecticide treated nets (LLINs) and insecticide treated materials (ITMs). PubMed, (National Centre for Biotechnology Information (NCBI), U.S. National Library of Medicine, NIH), MEDLINE, LILAC, Cochrane library, IBECS and Armed Forces Pest Management Board Literature Retrieval System search engines were used to identify studies of pyrethroid based coils and emanators with key-words "Mosquito coils" "Mosquito emanators" and "Spatial repellents". It was concluded that there is need to improve statistical reporting of studies, and reach consensus in the methodologies and terminologies used through standardized testing guidelines. Despite differing evaluation methodologies, data showed that coils and emanators induce mortality, deterrence, repellency as well as reduce the ability of mosquitoes to feed on humans. Available data on efficacy outdoors, dose-response relationships and effective distance of coils and emanators is inadequate for developing a target product profile (TPP), which will be required for such chemicals before optimized implementation can occur for maximum benefits in disease control

    Development of a framework for metabolic pathway analysis-driven strain optimization methods

    Get PDF
    Genome-scale metabolic models (GSMMs) have become important assets for rational design of compound overproduction using microbial cell factories. Most computational strain optimization methods (CSOM) using GSMMs, while useful in metabolic engineering, rely on the definition of questionable cell objectives, leading to some bias. Metabolic pathway analysis approaches do not require an objective function. Though their use brings immediate advantages, it has mostly been restricted to small scale models due to computational demands. Additionally, their complex parameterization and lack of intuitive tools pose an important challenge towards making these widely available to the community. Recently, MCSEnumerator has extended the scale of these methods, namely regarding enumeration of minimal cut sets, now able to handle GSMMs. This work proposes a tool implementing this method as a Java library and a plugin within the OptFlux metabolic engineering platform providing a friendly user interface. A standard enumeration problem and pipeline applicable to GSMMs is proposed, making use by the community simpler. To highlight the potential of these approaches, we devised a case study for overproduction of succinate, providing a phenotype analysis of a selected strategy and comparing robustness with a selected solution from a bi-level CSOM.The authors thank the project “DeYeastLibrary—Designer yeast strain library optimized for metabolic engineering applications”, Ref. ERA-IB-2/0003/2013, funded by national funds through “Fundação para a Ciência e Tecnologia / Ministério da Ciência, Tecnologia e Ensino Superior”.info:eu-repo/semantics/publishedVersio

    Genome of the Avirulent Human-Infective Trypanosome—Trypanosoma rangeli

    Get PDF
    Background: Trypanosoma rangeli is a hemoflagellate protozoan parasite infecting humans and other wild and domestic mammals across Central and South America. It does not cause human disease, but it can be mistaken for the etiologic agent of Chagas disease, Trypanosoma cruzi. We have sequenced the T. rangeli genome to provide new tools for elucidating the distinct and intriguing biology of this species and the key pathways related to interaction with its arthropod and mammalian hosts.  Methodology/Principal Findings: The T. rangeli haploid genome is ,24 Mb in length, and is the smallest and least repetitive trypanosomatid genome sequenced thus far. This parasite genome has shorter subtelomeric sequences compared to those of T. cruzi and T. brucei; displays intraspecific karyotype variability and lacks minichromosomes. Of the predicted 7,613 protein coding sequences, functional annotations could be determined for 2,415, while 5,043 are hypothetical proteins, some with evidence of protein expression. 7,101 genes (93%) are shared with other trypanosomatids that infect humans. An ortholog of the dcl2 gene involved in the T. brucei RNAi pathway was found in T. rangeli, but the RNAi machinery is non-functional since the other genes in this pathway are pseudogenized. T. rangeli is highly susceptible to oxidative stress, a phenotype that may be explained by a smaller number of anti-oxidant defense enzymes and heatshock proteins.  Conclusions/Significance: Phylogenetic comparison of nuclear and mitochondrial genes indicates that T. rangeli and T. cruzi are equidistant from T. brucei. In addition to revealing new aspects of trypanosome co-evolution within the vertebrate and invertebrate hosts, comparative genomic analysis with pathogenic trypanosomatids provides valuable new information that can be further explored with the aim of developing better diagnostic tools and/or therapeutic targets

    Bone mineral density in vocational and professional ballet dancers

    Get PDF
    Summary: According to existing literature, bone health in ballet dancers is controversial. We have verified that, compared to controls, young female and male vocational ballet dancers have lower bone mineral density (BMD) at both impact and non-impact sites, whereas female professional ballet dancers have lower BMD only at non-impact sites. Introduction: The aims of this study were to (a) assess bone mineral density (BMD) in vocational (VBD) and professional (PBD) ballet dancers and (b) investigate its association with body mass (BM), fat mass (FM), lean mass (LM), maturation and menarche. Methods: The total of 152 VBD (13 ± 2.3 years; 112 girls, 40 boys) and 96 controls (14 ± 2.1 years; 56 girls, 40 boys) and 184 PBD (28 ± 8.5 years; 129 females, 55 males) and 160 controls (27 ± 9.5 years; 110 female, 50 males) were assessed at the lumbar spine (LS), femoral neck (FN), forearm and total body by dual-energy X-ray absorptiometry. Maturation and menarche were assessed via questionnaires. Results: VBD revealed lower unadjusted BMD at all anatomical sites compared to controls (p < 0.001); following adjustments for Tanner stage and gynaecological age, female VBD showed similar BMD values at impact sites. However, no factors were found to explain the lower adjusted BMD values in VBD (female and male) at the forearm (non-impact site), nor for the lower adjusted BMD values in male VBD at the FN. Compared to controls, female PBD showed higher unadjusted and adjusted BMD for potential associated factors at the FN (impact site) (p < 0.001) and lower adjusted at the forearm (p < 0.001). Male PBD did not reveal lower BMD than controls at any site. Conclusions: both females and males VBD have lower BMD at impact and non-impact sites compared to control, whereas this is only the case at non-impact site in female PBD. Maturation seems to explain the lower BMD at impact sites in female VBD

    Genetic variation in Wnt/β-catenin and ER signalling pathways in female and male elite dancers and its associations with low bone mineral density: a cross-section and longitudinal study.

    Get PDF
    The association of genetic polymorphisms with low bone mineral density in elite athletes have not been considered previously. The present study found that bone mass phenotypes in elite and pre-elite dancers are related to genetic variants at the Wnt/β-catenin and ER pathways. Some athletes (e.g. gymnasts, dancers, swimmers) are at increased risk for low bone mineral density (BMD) which, if untreated, can lead to osteoporosis. To investigate the association of genetic polymorphisms in the oestrogen receptor (ER) and the Wnt/β-catenin signalling pathways with low BMD in elite and pre-elite dancers (impact sport athletes). The study included three phases: (1) 151 elite and pre-elite dancers were screened for the presence of low BMD and traditional osteoporosis risk factors (low body weight, menstrual disturbances, low energy availability); (2) a genetic association study was conducted in 151 elite and pre-elite dancers and age- and sex- controls; (3) serum sclerostin was measured in 101 pre-elite dancers and age- and sex-matched controls within a 3-year period. Eighty dancers revealed low BMD: 56.3% had at least one traditional osteoporosis risk factor, whereas 28.6% did not display any risk factor (37.2% revealed traditional osteoporosis risk factors, but had normal BMD). Body weight, menstrual disturbances and energy availability did not fully predict bone mass acquisition. Instead, genetic polymorphisms in the ER and Wnt/β-catenin pathways were found to be risk factors for low BMD in elite dancers. Sclerostin was significantly increased in dancers compared to controls during the 3-year follow-up (p < 0.05)
    corecore