122 research outputs found
Temporal evolution of solar energetic particle spectra
During solar flares and coronal mass ejections, solar energetic par- ticles (SEPs) may be released into the interplanetary medium and near-Earth locations. The energy spectra of SEP events at 1 AU are typically averaged over the entire event or studied in a few snapshots. In this paper we analyze the time evolution of the energy spectra of four large selected SEP events using a large number of snapshots. We use a multi-spacecraft and multi-instrument approach for the observations, obtained over a wide SEP energy range. We find large differences in the spectra at the beginning of the events as measured by different instruments. We show that over time, a wave-like structure is observed traveling through the spectra from the highest energies to the lowest energies, creating an “arch” shape which then straightens into a power law later in the event, after times of the order of 10 hours. We discuss the processes that determine SEP intensities and their role in shaping the spectral time evolution
DES15E2mlf: a spectroscopically confirmed superluminous supernova that exploded 3.5 Gyr after the big bang
We present the Dark Energy Survey (DES) discovery of DES15E2mlf, the most distant superluminous supernova (SLSN) spectroscopically confirmed to date. The light curves and Gemini spectroscopy of DES15E2mlf indicate that it is a Type I superluminous supernova (SLSN-I) at z = 1.861 (a lookback time of ∼10 Gyr) and peaking at MAB = −22.3 ± 0.1 mag. Given the high redshift, our data probe the rest-frame ultraviolet (1400–3500 Å) properties of the SN, finding velocity of the C III feature changes by ∼5600 km s−1 over 14 d around maximum light. We find the host galaxy of DES15E2mlf has a stellar mass of 3.5+3.6 −2.4 × 109 M, which is more massive than the typical SLSN-I host galaxy
Superluminous supernovae from the Dark Energy Survey
We present a sample of 21 hydrogen-free superluminous supernovae (SLSNe-I) and one hydrogen-rich SLSN (SLSN-II) detected during the five-year Dark Energy Survey (DES). These SNe, located in the redshift range 0.220 < z < 1.998, represent the largest homogeneously selected sample of SLSN events at high redshift. We present the observed g, r, i, z light curves for these SNe, which we interpolate using Gaussian processes. The resulting light curves are analysed to determine the luminosity function of SLSNe-I, and their evolutionary timescales. The DES SLSN-I sample significantly broadens the distribution of SLSN-I light-curve properties when combined with existing samples from the literature. We fit a magnetar model to our SLSNe, and find that this model alone is unable to replicate the behaviour of many of the bolometric light curves. We search the DES SLSN-I light curves for the presence of initial peaks prior to the main light-curve peak. Using a shock breakout model, our Monte Carlo search finds that 3 of our 14 events with pre-max data display such initial peaks. However, 10 events show no evidence for such peaks, in some cases down to an absolute magnitude of<−16, suggesting that such features are not ubiquitous to all SLSN-I events. We also identify a red pre-peak feature within the light curve of one SLSN, which is comparable to that observed within SN2018bsz
Dark Energy Survey Year 1 Results: A Precise H0 Measurement from DES Y1, BAO, and D/H Data
We combine Dark Energy Survey Year 1 clustering and weak lensing data with baryon acoustic oscillations and Big Bang nucleosynthesis experiments to constrain the Hubble constant. Assuming a flat ΛCDM model with minimal neutrino mass (Σm υ = 0.06 eV), we find H 0 = 67.4 -1.2+1.1 km s -1 Mpc -1 (68 per cent CL). This result is completely independent of Hubble constant measurements based on the distance ladder, cosmic microwave background anisotropies (both temperature and polarization), and strong lensing constraints. There are now five data sets that: (a) have no shared observational systematics; and (b) each constrains the Hubble constant with fractional uncertainty at the few percent level. We compare these five independent estimates, and find that, as a set, the differences between them are significant at the 2.5σ level (χ 2 /dof = 24/11, probability to exceed = 1.1 per cent). Having set the threshold for consistency at 3σ, we combine all five data sets to arrive at H 0 = 69.3 -0.6+0.4 km s -1 Mpc -
Bianchi {VI} in Scalar and Scalar-Tensor Cosmologies
We study several cosmological models with Bianchi \textrm{VI}
symmetries under the self-similar approach. In order to study how the
\textquotedblleft constants\textquotedblright\ and may vary, we
propose three scenarios where such constants are considered as time functions.
The first model is a perfect fluid. We find that the behavior of and
are related. If behaves as a growing time function then
is a positive decreasing time function but if is decreasing then
is negative. For this model we have found a new solution. The second model is a
scalar field, where in a phenomenological way, we consider a modification of
the Klein-Gordon equation in order to take into account the variation of .
Our third scenario is a scalar-tensor model. We find three solutions for this
models where is growing, constant or decreasing and is a positive
decreasing function or vanishes. We put special emphasis on calculating the
curvature invariants in order to see if the solutions isotropize.Comment: Typos corrected. References added, minor corrections. arXiv admin
note: text overlap with arXiv:0905.247
The first Hubble diagram and cosmological constraints using superluminous supernovae
This paper has gone through internal review by the DES collaboration.
It has Fermilab preprint number 19-115-AE and DES
publication number 13387. We acknowledge support from EU/FP7-
ERC grant 615929. RCN would like to acknowledge support from
STFC grant ST/N000688/1 and the Faculty of Technology at the
University of Portsmouth. LG was funded by the European Union’s
Horizon 2020 Framework Programme under the Marie Skłodowska-
Curie grant agreement no. 839090. This work has been partially
supported by the Spanish grant PGC2018-095317-B-C21 within
the European Funds for Regional Development (FEDER). Funding
for the DES Projects has been provided by the U.S. Department
of Energy, the U.S. National Science Foundation, the Ministry
of Science and Education of Spain, the Science and Technology
Facilities Council of the United Kingdom, the Higher Education
Funding Council for England, the National Center for Supercomputing
Applications at the University of Illinois at Urbana-Champaign,
the Kavli Institute of Cosmological Physics at the University of
Chicago, the Center for Cosmology and Astro-Particle Physics at
the Ohio State University, the Mitchell Institute for Fundamental
Physics and Astronomy at Texas A&M University, Financiadora
de Estudos e Projetos, Fundac¸ ˜ao Carlos Chagas Filho de Amparo
`a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de
Desenvolvimento Cient´ıfico e Tecnol´ogico and the Minist´erio da
Ciˆencia, Tecnologia e Inovac¸ ˜ao, the Deutsche Forschungsgemeinschaft,
and the Collaborating Institutions in the Dark Energy Survey.
The Collaborating Institutions are Argonne National Laboratory, the
University of California at Santa Cruz, the University of Cambridge,
Centro de Investigaciones Energ´eticas, Medioambientales y Tecnol
´ogicas-Madrid, the University of Chicago, University College
London, the DES-Brazil Consortium, the University of Edinburgh,
the Eidgen¨ossische Technische Hochschule (ETH) Z¨urich, Fermi
NationalAccelerator Laboratory, theUniversity of Illinois atUrbana-
Champaign, the Institut de Ci`encies de l’Espai (IEEC/CSIC), the
Institut de F´ısica d’Altes Energies, Lawrence Berkeley National
Laboratory, the Ludwig-Maximilians Universit¨at M¨unchen and the
associated Excellence Cluster Universe, the University of Michigan,
the National Optical Astronomy Observatory, the University of
Nottingham, The Ohio State University, the University of Pennsylvania,
the University of Portsmouth, SLAC National Accelerator
Laboratory, Stanford University, the University of Sussex, Texas
A&M University, and the OzDES Membership Consortium. Based
in part on observations at Cerro Tololo Inter-American Observatory,
National Optical Astronomy Observatory, which is operated by the
Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation.
The DES data management system is supported by the
National Science Foundation under grant numbers AST-1138766
and AST-1536171. The DES participants from Spanish institutions
are partially supported by MINECO under grants AYA2015-
71825, ESP2015-66861, FPA2015-68048, SEV-2016-0588, SEV-
2016-0597, and MDM-2015-0509, some of which include ERDF
funds from the European Union. IFAE is partially funded by the
CERCA program of the Generalitat de Catalunya. Research leading
to these results has received funding from the European Research
Council under the European Union Seventh Framework Programme
(FP7/2007-2013) including ERC grant agreements 240672, 291329,
and 306478.We acknowledge support from the Australian Research
Council Centre of Excellence for All-skyAstrophysics (CAASTRO),
through project number CE110001020, and the Brazilian Instituto
Nacional de Ciˆencia e Tecnologia (INCT) e-Universe (CNPq grant
465376/2014-2).
This paper has been authored by Fermi Research Alliance, LLC
under Contract No.DE-AC02-07CH11359 with theU.S.Department
of Energy, Office of Science, Office of High Energy Physics. The
United States Government retains and the publisher, by accepting
the paper for publication, acknowledges that the United States
Government retains a non-exclusive, paid-up, irrevocable, worldwide
license to publish or reproduce the published form of this paper,
or allow others to do so, for United States Government purposes.We present the first Hubble diagram of superluminous supernovae (SLSNe) out to a redshift of two, together with constraints
on the matter density, M, and the dark energy equation-of-state parameter, w(≡p/ρ). We build a sample of 20 cosmologically
useful SLSNe I based on light curve and spectroscopy quality cuts. We confirm the robustness of the peak–decline SLSN I
standardization relation with a larger data set and improved fitting techniques than previous works. We then solve the SLSN
model based on the above standardization via minimization of the χ2 computed from a covariance matrix that includes statistical
and systematic uncertainties. For a spatially flat cold dark matter ( CDM) cosmological model, we find M = 0.38+0.24
−0.19,
with an rms of 0.27 mag for the residuals of the distance moduli. For a w0waCDM cosmological model, the addition of SLSNe I
to a ‘baseline’ measurement consisting of Planck temperature together with Type Ia supernovae, results in a small improvement
in the constraints of w0 and wa of 4 per cent.We present simulations of future surveys with 868 and 492 SLSNe I (depending on
the configuration used) and show that such a sample can deliver cosmological constraints in a flat CDM model with the same
precision (considering only statistical uncertainties) as current surveys that use Type Ia supernovae, while providing a factor of
2–3 improvement in the precision of the constraints on the time variation of dark energy, w0 and wa. This paper represents the
proof of concept for superluminous supernova cosmology, and demonstrates they can provide an independent test of cosmology
in the high-redshift (z > 1) universe.EU/FP7-ERC grant 615929STFC grant ST/N000688/1Faculty of Technology at the
University of PortsmouthEuropean Union’s
Horizon 2020 Framework Programme under the Marie Skłodowska-
Curie grant agreement no. 839090Spanish grant PGC2018-095317-B-C21 within
the European Funds for Regional Development (FEDER)U.S. Department
of EnergyU.S. National Science FoundationMinistry
of Science and Education of SpainScience and Technology
Facilities Council of the United KingdomHigher Education
Funding Council for EnglandNational Center for Supercomputing
Applications at the University of Illinois at Urbana-Champaign,Kavli Institute of Cosmological Physics at the University of
ChicagoCenter for Cosmology and Astro-Particle Physics at
the Ohio State UniversityMitchell Institute for Fundamental
Physics and Astronomy at Texas A&M University, Financiadora
de Estudos e Projetos, Fundacão Carlos Chagas Filho de Amparo
`a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de
Desenvolvimento Científico e Tecnológico and the Ministério da
Ciencia, Tecnologia e InovacãoDeutsche ForschungsgemeinschaftCollaborating Institutions in the Dark Energy Survey.National Science Foundation under grant numbers AST-1138766
and AST-1536171.T MINECO under grants AYA2015-
71825, ESP2015-66861, FPA2015-68048, SEV-2016-0588, SEV-
2016-0597, and MDM-2015-0509, some of which include ERDF
funds from the European Union.CERCA program of the Generalitat de Catalunya.European Research
Council under the European Union Seventh Framework Programme
(FP7/2007-2013) including ERC grant agreements 240672, 291329,
and 306478.Australian Research
Council Centre of Excellence for All-skyAstrophysics (CAASTRO),
through project number CE110001020Brazilian Instituto
Nacional de Ciˆencia e Tecnologia (INCT) e-Universe (CNPq grant
465376/2014-2)Fermi Research Alliance, LLC
under Contract No.DE-AC02-07CH11359 with theU.S.Department
of Energy, Office of Science, Office of High Energy Physic
Dark Energy Survey year 1 results: cross-correlation redshifts - methods and systematics characterization
We use numerical simulations to characterize the performance of a clustering-based method to calibrate photometric redshift biases. In particular, we cross-correlate the weak lensing source galaxies from the Dark Energy Survey Year 1 sample with redMaGiC galaxies (luminous red galaxies with secure photometric redshifts) to estimate the redshift distribution of the former sample. The recovered redshift distributions are used to calibrate the photometric redshift bias of standard photo-z methods applied to the same source galaxy sample.We apply the method to two photo-z codes run in our simulated data: Bayesian Photometric Redshift and Directional Neighbourhood Fitting. We characterize the systematic uncertainties of our calibration procedure, and find that these systematic uncertainties dominate our error budget. The dominant systematics are due to our assumption of unevolving bias and clustering across each redshift bin, and to differences between the shapes of the redshift distributions derived by clustering versus photo-zs. The systematic uncertainty in the mean redshift bias of the source galaxy sample is Δz ≲ 0.02, though the precise value depends on the redshift bin under consideration. We discuss possible ways to mitigate the impact of our dominant systematics in future analyses
- …