10 research outputs found

    Nanosecond repetitively pulsed discharges and conventional sparks of ammonia-air mixtures in a fan-stirred cruciform burner: Flammability limits and ignition transition

    No full text
    Ammonia, an efficient hydrogen carrier, is crucial for achieving net-zero emissions. However, its low reactivity, as manifested through small unstretched laminar flame speed (SL,0 ∼ 7 cm/s) and large laminar flame thickness (δL ∼ 2.85 mm) at atmospheric pressure and stoichiometric conditions together with narrow flammability limits, makes it difficult for initiation. As such, how to measure accurately ammonia minimum ignition energies under laminar and turbulent conditions (MIEL and MIET) and identify ammonia flammability limits are important to understand fundamental challenges and restricted usage for practical applications. We apply both nanosecond-repetitively-pulsed-discharges (NRPD) and conventional sparks (CS) via the same stainless-steel electrodes of 1-mm diameter with sharp ends at a fixed gap of 2 mm in the same fan-stirred cruciform burner to identify flammability limits of ammonia/air mixtures for spherical flame initiation. The burner is capable of generating near-isotropic turbulence having roughly equal magnitudes of r.m.s. turbulent fluctuating velocities in all three directions (u′) with negligible mean velocities. We find that NRPD operated at a pulse repetition frequency of 40 kHz can promote ignition or decrease the MIE on fuel lean and fuel rich sides as compared to that of CS. However, even using 2,000 pulses with a total ignition energy of 4.4 J for NRPD, no self-sustained flame propagation can be observed at ϕ = 0.65 and/or ϕ = 1.44 that marks lean and/or rich flammability limits for spherical flame initiation. Moreover, we also find a turbulent ignition transition for the stoichiometric ammonia/air mixture, of which the increasing slopes of MIET/MIEL versus u′/SL change drastically from gradually to exponentially at a critical value of (u′/SL)c ≈ 13 for both NRPD and CS. Finally, these results should be useful for future practical applications of premixed ammonia/air combustion

    Spatial modelling for nitrogen leaching from intensive farming in Red River Delta of Vietnam

    No full text
    In this study, a spatial dynamic model was developed, to simulate nitrogen dynamics in Van Hoi commune, Tam Duong district, Vietnam, for different soil and land use types, under different irrigation and fertilizer regimes. The model has been calibrated using measured nitrogen concentrations in soil solution in March and August 2004 and validated for data from March and August 2005. Lateral flow was low in this level area. Percolation was the main process leading to high nitrogen leaching losses to ground water. Calculated annual leaching losses varied from 88 to 122 kg N ha^{-1} in flowers, 64 to 82 in vegetables of the cabbage group, 51 to 76 in chili, 56 to 75 in vegetables of the squash group, and 36 to 55 in rice

    Spatial modelling for nitrogen leaching from intensive farming in Red River Delta of Vietnam

    No full text
    In this study, a spatial dynamic model was developed, to simulate nitrogen dynamics in Van Hoi commune, Tam Duong district, Vietnam, for different soil and land use types, under different irrigation and fertilizer regimes. The model has been calibrated using measured nitrogen concentrations in soil solution in March and August 2004 and validated for data from March and August 2005. Lateral flow was low in this level area. Percolation was the main process leading to high nitrogen leaching losses to ground water. Calculated annual leaching losses varied from 88 to 122 kg N ha^{-1} in flowers, 64 to 82 in vegetables of the cabbage group, 51 to 76 in chili, 56 to 75 in vegetables of the squash group, and 36 to 55 in rice

    Influence of paddy rice terraces on soil erosion of a small watershed in a hilly area of Northern Vietnam

    No full text
    Soil erosion is the main cause of soil degradation in northern Vietnam. In this study, soil erosion was measured in 2 m2 field plots, a 19.1-ha sub-watershed, and a 248.9-ha main watershed in Tam Quan commune, Tam Duong district, northern Vietnam during 2 years, i.e., 2004–2005. The main watershed includes lowland paddy fields, and is representative for watersheds in the northern Vietnamese landscape. Soil erosion was measured for eight events, at all the three scales to increase our understanding of erosional processes and to assess the effects of paddy fields within the main watershed. The results show that total discharge and sediment yield in both sub-watershed and main watershed were much lower than those in the field plots. Total discharge per unit area in the main watershed was higher than in the sub-watershed, because during the growing season, the paddies are filled with water and any rainfall on them therefore becomes runoff. Sediment yield in the main watershed fluctuated, depending on the soil erosion contribution from many sub-watersheds. Annual rainfalls in 2004 and 2005 were 1,172 and 1,560 mm, respectively, resulting in corresponding total discharges of 54 and 332 mm and total soil losses of 163 and 1,722 kg ha-1 year-1. High runoff volumes occurred in July, August, and September, but April, June, the last 10 days of September and October, were the susceptible periods for soil erosion in the study area because of low plant cover and many agricultural activities during these periods

    Influence of paddy rice terraces on soil erosion of a small watershed in a hilly area of Northern Vietnam

    No full text
    Soil erosion is the main cause of soil degradation in northern Vietnam. In this study, soil erosion was measured in 2 m2 field plots, a 19.1-ha sub-watershed, and a 248.9-ha main watershed in Tam Quan commune, Tam Duong district, northern Vietnam during 2 years, i.e., 2004–2005. The main watershed includes lowland paddy fields, and is representative for watersheds in the northern Vietnamese landscape. Soil erosion was measured for eight events, at all the three scales to increase our understanding of erosional processes and to assess the effects of paddy fields within the main watershed. The results show that total discharge and sediment yield in both sub-watershed and main watershed were much lower than those in the field plots. Total discharge per unit area in the main watershed was higher than in the sub-watershed, because during the growing season, the paddies are filled with water and any rainfall on them therefore becomes runoff. Sediment yield in the main watershed fluctuated, depending on the soil erosion contribution from many sub-watersheds. Annual rainfalls in 2004 and 2005 were 1,172 and 1,560 mm, respectively, resulting in corresponding total discharges of 54 and 332 mm and total soil losses of 163 and 1,722 kg ha-1 year-1. High runoff volumes occurred in July, August, and September, but April, June, the last 10 days of September and October, were the susceptible periods for soil erosion in the study area because of low plant cover and many agricultural activities during these periods

    Synthesis and biological evaluation of novel phane-structured diazacrowns containing γ-piperidone and pyridine rings

    No full text
    Six novel phane-structured diazacrowns containing γ-piperidone and pyridine rings were synthesized from podand 2-+,6-bis(2-formylphenoxymethyl)pyridine, with the γ-piperidone moiety having been constructed in the course of its domino condensation with simple ketones and ammonium acetate. The compounds were tested in vitro for antimicrobial and cytotoxic activity against four human cancer cell lines (Hep-G2, RD, MCF-7, Lu-1) and the Vero cell line. X-Ray structure study of one representative compound revealed its rac-1RS,23SR,24RS,26SR configuration. © 202
    corecore