12 research outputs found

    Association of Chromosome 9p21 with Subsequent Coronary Heart Disease events:A GENIUS-CHD study of individual participant data

    Get PDF
    BACKGROUND:Genetic variation at chromosome 9p21 is a recognized risk factor for coronary heart disease (CHD). However, its effect on disease progression and subsequent events is unclear, raising questions about its value for stratification of residual risk. METHODS:A variant at chromosome 9p21 (rs1333049) was tested for association with subsequent events during follow-up in 103,357 Europeans with established CHD at baseline from the GENIUS-CHD Consortium (73.1% male, mean age 62.9 years). The primary outcome, subsequent CHD death or myocardial infarction (CHD death/MI), occurred in 13,040 of the 93,115 participants with available outcome data. Effect estimates were compared to case/control risk obtained from CARDIoGRAMPlusC4D including 47,222 CHD cases and 122,264 controls free of CHD. RESULTS:Meta-analyses revealed no significant association between chromosome 9p21 and the primary outcome of CHD death/MI among those with established CHD at baseline (GENIUS-CHD OR 1.02; 95% CI 0.99-1.05). This contrasted with a strong association in CARDIoGRAMPlusC4D OR 1.20; 95% CI 1.18-1.22; p for interaction Conclusions: In contrast to studies comparing individuals with CHD to disease free controls, we found no clear association between genetic variation at chromosome 9p21 and risk of subsequent acute CHD events when all individuals had CHD at baseline. However, the association with subsequent revascularization may support the postulated mechanism of chromosome 9p21 for promoting atheroma development

    Manufacturing Threats

    No full text
    International audienceThis chapter introduces an overview of the main reliability threats of last nanoscale generations of CMOS technology designs. In particular, the chapter focuses on sources of process variability and their impact on circuit design and their performances, but also on the runtime variability such as voltage fluctuations as well soft errors. Further to that we go over the transistor aging provoked by different wear-out physical effects such as Bias Temperature Instability (BTI), Hot Carrier Injection (HCI), Random Telegraph Noise (RTN) and Time-Dependent Dielectric Breakdown (TDDB)

    Dyes Depollution of Water Using Porous TiO2-Based Photocatalysts

    No full text
    International audienc

    Subsequent event risk in individuals with established coronary heart disease

    No full text
    Background The Genetics of Subsequent Coronary Heart Disease (GENIUS-CHD) consortium was established to facilitate discovery and validation of genetic variants and biomarkers for risk of subsequent CHD events, in individuals with established CHD. Methods The consortium currently includes 57 studies from 18 countries, recruiting 185 614 participants with either acute coronary syndrome, stable CHD, or a mixture of both at baseline. All studies collected biological samples and followed-up study participants prospectively for subsequent events. Results Enrollment into the individual studies took place between 1985 to present day with a duration of follow-up ranging from 9 months to 15 years. Within each study, participants with CHD are predominantly of self-reported European descent (38%–100%), mostly male (44%–91%) with mean ages at recruitment ranging from 40 to 75 years. Initial feasibility analyses, using a federated analysis approach, yielded expected associations between age (hazard ratio, 1.15; 95% CI, 1.14–1.16) per 5-year increase, male sex (hazard ratio, 1.17; 95% CI, 1.13–1.21) and smoking (hazard ratio, 1.43; 95% CI, 1.35–1.51) with risk of subsequent CHD death or myocardial infarction and differing associations with other individual and composite cardiovascular endpoints. Conclusions GENIUS-CHD is a global collaboration seeking to elucidate genetic and nongenetic determinants of subsequent event risk in individuals with established CHD, to improve residual risk prediction and identify novel drug targets for secondary prevention. Initial analyses demonstrate the feasibility and reliability of a federated analysis approach. The consortium now plans to initiate and test novel hypotheses as well as supporting replication and validation analyses for other investigators.</p

    Novel Insights into Genetics of Arterial Thrombosis

    No full text
    corecore