109 research outputs found

    UASIS: Universal Automatic SNP Identification System

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>SNP (Single Nucleotide Polymorphism), the most common genetic variations between human beings, is believed to be a promising way towards personalized medicine. As more and more research on SNPs are being conducted, non-standard nomenclatures may generate potential problems. The most serious issue is that researchers cannot perform cross referencing among different SNP databases. This will result in more resources and time required to track SNPs. It could be detrimental to the entire academic community.</p> <p>Results</p> <p>UASIS (Universal Automated SNP Identification System) is a web-based server for SNP nomenclature standardization and translation at DNA level. Three utilities are available. They are UASIS Aligner, Universal SNP Name Generator and SNP Name Mapper. UASIS maps SNPs from different databases, including dbSNP, GWAS, HapMap and JSNP etc., into an uniform view efficiently using a proposed universal nomenclature and state-of-art alignment algorithms. UASIS is freely available at <url>http://www.uasis.tk</url> with no requirement of log-in.</p> <p>Conclusions</p> <p>UASIS is a helpful platform for SNP cross referencing and tracking. By providing an informative, unique and unambiguous nomenclature, which utilizes unique position of a SNP, we aim to resolve the ambiguity of SNP nomenclatures currently practised. Our universal nomenclature is a good complement to mainstream SNP notations such as rs# and HGVS guidelines. UASIS acts as a bridge to connect heterogeneous representations of SNPs.</p

    Pretreatment HLADQA1-HLADRB1 Testing for the Prevention of Azathioprine-Induced Pancreatitis in Inflammatory Bowel Disease: A Prospective Cohort Study

    Get PDF
    INTRODUCTION:Azathioprine-induced pancreatitis is an idiosyncratic and unpredictable response, occurring in up to 7% of azathioprine-exposed patients with inflammatory bowel disease (IBD). The haplotype HLADQA1-HLADRB1*07:01A\u3eC is strongly associated with azathioprine-induced pancreatitis in IBD. We aimed to evaluate whether pretreatment HLADQA1-HLADRB1*07:01A\u3eC screening will reduce the risk of azathioprine-induced pancreatitis.METHODS:Participants with IBD were screened for HLADQA1-HLADRB1*07:01A\u3eC, and participants with a variant genotype were excluded from azathioprine treatment. Wild-type participants were started on azathioprine and followed for 3 months. The incidence of pancreatitis was compared with unscreened historical controls.RESULTS:HLADQA1-HLADRB1*07:01A\u3eC screening resulted in an 11-fold reduction in the incidence of azathioprine-induced pancreatitis (n = 1/328 or 0.30% vs n = 13/373 or 3.4%). In propensity score-matched cohorts (age and sex), HLA DQA1-HLADRB1*07:01A\u3eC screening was significantly associated with a reduction in the incidence of AZA-induced pancreatitis independent of weight, glucocorticoid exposure, and smoking status (adjusted odds ratio = 0.075, 95% confidence interval = 0.01-0.58, P = 0.01). Up to 45% (n = 271/599) of participants were excluded from azathioprine therapy based on the haplotype in the HLADQA1-HLADRB1*07:01A\u3eC-screened cohort.DISCUSSION:HLADQA1-HLADRB1*07:01A\u3eC screening reduced the risk of azathioprine-induced pancreatitis; however, using this strategy to guide the use of azathioprine therapy in IBD may eliminate a large proportion of patients from being eligible for treatment with azathioprine. In regions where there is access to other IBD therapies, and given the short-term and long-term toxicities associated with azathioprine, HLADQA1-HLADRB1*07:01A\u3eC-screening may be a clinically relevant strategy for enhancing the safe use of azathioprine in IBD. In addition, cost-effectiveness analyses are needed to further solidify the utility of HLADQA1-HLADRB1*07:01A\u3eC screening in IBD populations

    Cross-platform comparability of microarray technology: Intra-platform consistency and appropriate data analysis procedures are essential

    Get PDF
    BACKGROUND: The acceptance of microarray technology in regulatory decision-making is being challenged by the existence of various platforms and data analysis methods. A recent report (E. Marshall, Science, 306, 630–631, 2004), by extensively citing the study of Tan et al. (Nucleic Acids Res., 31, 5676–5684, 2003), portrays a disturbingly negative picture of the cross-platform comparability, and, hence, the reliability of microarray technology. RESULTS: We reanalyzed Tan's dataset and found that the intra-platform consistency was low, indicating a problem in experimental procedures from which the dataset was generated. Furthermore, by using three gene selection methods (i.e., p-value ranking, fold-change ranking, and Significance Analysis of Microarrays (SAM)) on the same dataset we found that p-value ranking (the method emphasized by Tan et al.) results in much lower cross-platform concordance compared to fold-change ranking or SAM. Therefore, the low cross-platform concordance reported in Tan's study appears to be mainly due to a combination of low intra-platform consistency and a poor choice of data analysis procedures, instead of inherent technical differences among different platforms, as suggested by Tan et al. and Marshall. CONCLUSION: Our results illustrate the importance of establishing calibrated RNA samples and reference datasets to objectively assess the performance of different microarray platforms and the proficiency of individual laboratories as well as the merits of various data analysis procedures. Thus, we are progressively coordinating the MAQC project, a community-wide effort for microarray quality control

    Improvement in the Reproducibility and Accuracy of DNA Microarray Quantification by Optimizing Hybridization Conditions

    Get PDF
    BACKGROUND: DNA microarrays, which have been increasingly used to monitor mRNA transcripts at a global level, can provide detailed insight into cellular processes involved in response to drugs and toxins. This is leading to new understandings of signaling networks that operate in the cell, and the molecular basis of diseases. Custom printed oligonucleotide arrays have proven to be an effective way to facilitate the applications of DNA microarray technology. A successful microarray experiment, however, involves many steps: well-designed oligonucleotide probes, printing, RNA extraction and labeling, hybridization, and imaging. Optimization is essential to generate reliable microarray data. RESULTS: Hybridization and washing steps are crucial for a successful microarray experiment. By following the hybridization and washing conditions recommended by an oligonucleotide provider, it was found that the expression ratios were compressed greater than expected and data analysis revealed a high degree of non-specific binding. A series of experiments was conducted using rat mixed tissue RNA reference material (MTRRM) and other RNA samples to optimize the hybridization and washing conditions. The optimized hybridization and washing conditions greatly reduced the non-specific binding and improved the accuracy of spot intensity measurements. CONCLUSION: The results from the optimized hybridization and washing conditions greatly improved the reproducibility and accuracy of expression ratios. These experiments also suggested the importance of probe designs using better bioinformatics approaches and the need for common reference RNA samples for platform performance evaluation in order to fulfill the potential of DNA microarray technology

    Control of interjoint coordination during the swing phase of normal gait at different speeds

    Get PDF
    BACKGROUND: It has been suggested that the control of unconstrained movements is simplified via the imposition of a kinetic constraint that produces dynamic torques at each moving joint such that they are a linear function of a single motor command. The linear relationship between dynamic torques at each joint has been demonstrated for multijoint upper limb movements. The purpose of the current study was to test the applicability of such a control scheme to the unconstrained portion of the gait cycle – the swing phase. METHODS: Twenty-eight neurologically normal individuals walked along a track at three different speeds. Angular displacements and dynamic torques produced at each of the three lower limb joints (hip, knee and ankle) were calculated from segmental position data recorded during each trial. We employed principal component (PC) analysis to determine (1) the similarity of kinematic and kinetic time series at the ankle, knee and hip during the swing phase of gait, and (2) the effect of walking speed on the range of joint displacement and torque. RESULTS: The angular displacements of the three joints were accounted for by two PCs during the swing phase (Variance accounted for – PC1: 75.1 ± 1.4%, PC2: 23.2 ± 1.3%), whereas the dynamic joint torques were described by a single PC (Variance accounted for – PC1: 93.8 ± 0.9%). Increases in walking speed were associated with increases in the range of motion and magnitude of torque at each joint although the ratio describing the relative magnitude of torque at each joint remained constant. CONCLUSION: Our results support the idea that the control of leg swing during gait is simplified in two ways: (1) the pattern of dynamic torque at each lower limb joint is produced by appropriately scaling a single motor command and (2) the magnitude of dynamic torque at all three joints can be specified with knowledge of the magnitude of torque at a single joint. Walking speed could therefore be altered by modifying a single value related to the magnitude of torque at one joint

    Treatment of ocular allergies:nonpharmacologic, pharmacologic and immunotherapy

    Get PDF
    Ocular allergy is a significant and growing issue worldwide but for many patients, it is often not differentiated from systemic conditions, such as hay fever. Management of seasonal and perennial allergic conjunctivitis is often poor. Management is principally through avoidance measures (blocking or hygiene), nonpharmaceutical (such as artificial tears and cold compresses) and pharmaceutical (such as topical antihistamines and prophylactic mast cell stabilizers). Vernal and atopic keratoconjunctivitis are more severe and generally need treatment with NSAIDs, steroids and immunomodulators. Giant papillary conjunctivitis can be related to allergy but also is often contact lens related and in such cases can be managed by a period of abstinence and replacement of the lens or a change in lens material and/or design. Immunotherapy can be efficacious in severe, persistent cases of contact lens or allergic conjunctivitis

    Measuring Multi-Joint Stiffness during Single Movements: Numerical Validation of a Novel Time-Frequency Approach

    Get PDF
    This study presents and validates a Time-Frequency technique for measuring 2-dimensional multijoint arm stiffness throughout a single planar movement as well as during static posture. It is proposed as an alternative to current regressive methods which require numerous repetitions to obtain average stiffness on a small segment of the hand trajectory. The method is based on the analysis of the reassigned spectrogram of the arm's response to impulsive perturbations and can estimate arm stiffness on a trial-by-trial basis. Analytic and empirical methods are first derived and tested through modal analysis on synthetic data. The technique's accuracy and robustness are assessed by modeling the estimation of stiffness time profiles changing at different rates and affected by different noise levels. Our method obtains results comparable with two well-known regressive techniques. We also test how the technique can identify the viscoelastic component of non-linear and higher than second order systems with a non-parametrical approach. The technique proposed here is very impervious to noise and can be used easily for both postural and movement tasks. Estimations of stiffness profiles are possible with only one perturbation, making our method a useful tool for estimating limb stiffness during motor learning and adaptation tasks, and for understanding the modulation of stiffness in individuals with neurodegenerative diseases

    Meta-Profiles of Gene Expression during Aging: Limited Similarities between Mouse and Human and an Unexpectedly Decreased Inflammatory Signature

    Get PDF
    Background: Skin aging is associated with intrinsic processes that compromise the structure of the extracellular matrix while promoting loss of functional and regenerative capacity. These processes are accompanied by a large-scale shift in gene expression, but underlying mechanisms are not understood and conservation of these mechanisms between humans and mice is uncertain. Results: We used genome-wide expression profiling to investigate the aging skin transcriptome. In humans, age-related shifts in gene expression were sex-specific. In females, aging increased expression of transcripts associated with T-cells, B-cells and dendritic cells, and decreased expression of genes in regions with elevated Zeb1, AP-2 and YY1 motif density. In males, however, these effects were contrasting or absent. When age-associated gene expression patterns in human skin were compared to those in tail skin from CB6F1 mice, overall human-mouse correspondence was weak. Moreover, inflammatory gene expression patterns were not induced with aging of mouse tail skin, and well-known aging biomarkers were in fact decreased (e.g., Clec7a, Lyz1 and Lyz2). These unexpected patterns and weak human-mouse correspondence may be due to decreased abundance of antigen presenting cells in mouse tail skin with age. Conclusions: Aging is generally associated with a pro-inflammatory state, but we have identified an exception to this pattern with aging of CB6F1 mouse tail skin. Aging therefore does not uniformly heighten inflammatory status across all mouse tissues. Furthermore, we identified both intercellular and intracellular mechanisms of transcriptome aging, including those that are sex- and species-specific

    Molecular Insights into Reprogramming-Initiation Events Mediated by the OSKM Gene Regulatory Network

    Get PDF
    Somatic cells can be reprogrammed to induced pluripotent stem cells by over-expression of OCT4, SOX2, KLF4 and c-MYC (OSKM). With the aim of unveiling the early mechanisms underlying the induction of pluripotency, we have analyzed transcriptional profiles at 24, 48 and 72 hours post-transduction of OSKM into human foreskin fibroblasts. Experiments confirmed that upon viral transduction, the immediate response is innate immunity, which induces free radical generation, oxidative DNA damage, p53 activation, senescence, and apoptosis, ultimately leading to a reduction in the reprogramming efficiency. Conversely, nucleofection of OSKM plasmids does not elicit the same cellular stress, suggesting viral response as an early reprogramming roadblock. Additional initiation events include the activation of surface markers associated with pluripotency and the suppression of epithelial-to-mesenchymal transition. Furthermore, reconstruction of an OSKM interaction network highlights intermediate path nodes as candidates for improvement intervention. Overall, the results suggest three strategies to improve reprogramming efficiency employing: 1) anti-inflammatory modulation of innate immune response, 2) pre-selection of cells expressing pluripotency-associated surface antigens, 3) activation of specific interaction paths that amplify the pluripotency signal

    A framework for the development of a global standardised marine taxon reference image database (SMarTaR-ID) to support image-based analyses

    Get PDF
    Video and image data are regularly used in the field of benthic ecology to document biodiversity. However, their use is subject to a number of challenges, principally the identification of taxa within the images without associated physical specimens. The challenge of applying traditional taxonomic keys to the identification of fauna from images has led to the development of personal, group, or institution level reference image catalogues of operational taxonomic units (OTUs) or morphospecies. Lack of standardisation among these reference catalogues has led to problems with observer bias and the inability to combine datasets across studies. In addition, lack of a common reference standard is stifling efforts in the application of artificial intelligence to taxon identification. Using the North Atlantic deep sea as a case study, we propose a database structure to facilitate standardisation of morphospecies image catalogues between research groups and support future use in multiple front-end applications. We also propose a framework for coordination of international efforts to develop reference guides for the identification of marine species from images. The proposed structure maps to the Darwin Core standard to allow integration with existing databases. We suggest a management framework where high-level taxonomic groups are curated by a regional team, consisting of both end users and taxonomic experts. We identify a mechanism by which overall quality of data within a common reference guide could be raised over the next decade. Finally, we discuss the role of a common reference standard in advancing marine ecology and supporting sustainable use of this ecosystem
    corecore