28 research outputs found

    Caring Matters: Creating a Holistic BSN Program and Evaluating Caring in Nursing

    Get PDF
    Caring is foundational to professional nursing practice and is defined by Simone Roach (2002) as “the locus of all attributes used to describe nursing”. In an increasingly complex healthcare environment, the delivery of nursing care that is centered on caring is fading. Nurse educators are called to address this issue by developing a curriculum that places equal importance on caring and competence in nursing. While creating a curriculum centered on caring, educators must also develop methods to evaluate caring. Within a newly designed Bachelor of Science in Nursing (BSN) program with holistic foundations, rubrics were created to evaluate caring and competence for skills requiring validation. In these rubrics, caring is measured by attributes within Simone Roach’s Six Cs, in addition to three supplementary attributes selected by faculty

    Regulation of Yeast-to-Hyphae Transition in <i>Yarrowia lipolytica</i>

    Get PDF
    The yeast Yarrowia lipolytica undergoes a morphological transition from yeast-to-hyphal growth in response to environmental conditions. A forward genetic screen was used to identify mutants that reliably remain in the yeast phase, which were then assessed by whole-genome sequencing. All the smooth mutants identified, so named because of their colony morphology, exhibit independent loss of DNA at a repetitive locus made up of interspersed ribosomal DNA and short 10- to 40-mer telomere-like repeats. The loss of repetitive DNA is associated with downregulation of genes with stress response elements (5'-CCCCT-3') and upregulation of genes with cell cycle box (5'-ACGCG-3') motifs in their promoter region. The stress response element is bound by the transcription factor Msn2p in Saccharomyces cerevisiae We confirmed that the Y. lipolyticamsn2 (Ylmsn2) ortholog is required for hyphal growth and found that overexpression of Ylmsn2 enables hyphal growth in smooth strains. The cell cycle box is bound by the Mbp1p/Swi6p complex in S. cerevisiae to regulate G1-to-S phase progression. We found that overexpression of either the Ylmbp1 or Ylswi6 homologs decreased hyphal growth and that deletion of either Ylmbp1 or Ylswi6 promotes hyphal growth in smooth strains. A second forward genetic screen for reversion to hyphal growth was performed with the smooth-33 mutant to identify additional genetic factors regulating hyphal growth in Y. lipolytica Thirteen of the mutants sequenced from this screen had coding mutations in five kinases, including the histidine kinases Ylchk1 and Ylnik1 and kinases of the high-osmolarity glycerol response (HOG) mitogen-activated protein (MAP) kinase cascade Ylssk2, Ylpbs2, and Ylhog1 Together, these results demonstrate that Y. lipolytica transitions to hyphal growth in response to stress through multiple signaling pathways.IMPORTANCE Many yeasts undergo a morphological transition from yeast-to-hyphal growth in response to environmental conditions. We used forward and reverse genetic techniques to identify genes regulating this transition in Yarrowia lipolytica We confirmed that the transcription factor Ylmsn2 is required for the transition to hyphal growth and found that signaling by the histidine kinases Ylchk1 and Ylnik1 as well as the MAP kinases of the HOG pathway (Ylssk2, Ylpbs2, and Ylhog1) regulates the transition to hyphal growth. These results suggest that Y. lipolytica transitions to hyphal growth in response to stress through multiple kinase pathways. Intriguingly, we found that a repetitive portion of the genome containing telomere-like and rDNA repeats may be involved in the transition to hyphal growth, suggesting a link between this region and the general stress response

    An Interactive Database for the Assessment of Histone Antibody Specificity

    Get PDF
    Access to high quality antibodies is a necessity for the study of histones and their posttranslational modifications (PTMs). Here we debut The Histone Antibody Specificity Database (http://www.histoneantibodies.com), an online and expanding resource cataloguing the behavior of widely used commercially available histone antibodies by peptide microarray. This interactive web portal provides a critical resource to the biological research community who routinely use these antibodies as detection reagents for a wide range of applications

    Human Pathogen Shown to Cause Disease in the Threatened Eklhorn Coral Acropora palmata

    Get PDF
    Coral reefs are in severe decline. Infections by the human pathogen Serratia marcescens have contributed to precipitous losses in the common Caribbean elkhorn coral, Acropora palmata, culminating in its listing under the United States Endangered Species Act. During a 2003 outbreak of this coral disease, called acroporid serratiosis (APS), a unique strain of the pathogen, Serratia marcescens strain PDR60, was identified from diseased A. palmata, human wastewater, the non-host coral Siderastrea siderea and the corallivorous snail Coralliophila abbreviata. In order to examine humans as a source and other marine invertebrates as vectors and/or reservoirs of the APS pathogen, challenge experiments were conducted with A. palmata maintained in closed aquaria to determine infectivity of strain PDR60 from reef and wastewater sources. Strain PDR60 from wastewater and diseased A. palmata caused disease signs in elkhorn coral in as little as four and five days, respectively, demonstrating that wastewater is a definitive source of APS and identifying human strain PDR60 as a coral pathogen through fulfillment of Koch's postulates. A. palmata inoculated with strain PDR60 from C. abbreviata showed limited virulence, with one of three inoculated fragments developing APS signs within 13 days. Strain PDR60 from non-host coral S. siderea showed a delayed pathogenic effect, with disease signs developing within an average of 20 days. These results suggest that C. abbreviata and non-host corals may function as reservoirs or vectors of the APS pathogen. Our results provide the first example of a marine “reverse zoonosis” involving the transmission of a human pathogen (S. marcescens) to a marine invertebrate (A. palmata). These findings underscore the interaction between public health practices and environmental health indices such as coral reef survival

    Proteomic Analysis of Fusarium solani Isolated from the Asian Longhorned Beetle, Anoplophora glabripennis

    Get PDF
    Wood is a highly intractable food source, yet many insects successfully colonize and thrive in this challenging niche. Overcoming the lignin barrier of wood is a key challenge in nutrient acquisition, but full depolymerization of intact lignin polymers has only been conclusively demonstrated in fungi and is not known to occur by enzymes produced by insects or bacteria. Previous research validated that lignocellulose and hemicellulose degradation occur within the gut of the wood boring insect, Anoplophora glabripennis (Asian longhorned beetle), and that a fungal species, Fusarium solani (ATCC MYA 4552), is consistently associated with the larval stage. While the nature of this relationship is unresolved, we sought to assess this fungal isolate's ability to degrade lignocellulose and cell wall polysaccharides and to extract nutrients from woody tissue. This gut-derived fungal isolate was inoculated onto a wood-based substrate and shotgun proteomics using Multidimensional Protein Identification Technology (MudPIT) was employed to identify 400 expressed proteins. Through this approach, we detected proteins responsible for plant cell wall polysaccharide degradation, including proteins belonging to 28 glycosyl hydrolase families and several cutinases, esterases, lipases, pectate lyases, and polysaccharide deacetylases. Proteinases with broad substrate specificities and ureases were observed, indicating that this isolate has the capability to digest plant cell wall proteins and recycle nitrogenous waste under periods of nutrient limitation. Additionally, several laccases, peroxidases, and enzymes involved in extracellular hydrogen peroxide production previously implicated in lignin depolymerization were detected. In vitro biochemical assays were conducted to corroborate MudPIT results and confirmed that cellulases, glycosyl hydrolases, xylanases, laccases, and Mn- independent peroxidases were active in culture; however, lignin- and Mn- dependent peroxidase activities were not detected While little is known about the role of filamentous fungi and their associations with insects, these findings suggest that this isolate has the endogenous potential to degrade lignocellulose and extract nutrients from woody tissue

    Investigation of inter- and intraspecies variation through genome sequencing of Aspergillus section Nigri

    Get PDF
    Aspergillus section Nigri comprises filamentous fungi relevant to biomedicine, bioenergy, health, and biotechnology. To learn more about what genetically sets these species apart, as well as about potential applications in biotechnology and biomedicine, we sequenced 23 genomes de novo, forming a full genome compendium for the section (26 species), as well as 6 Aspergillus niger isolates. This allowed us to quantify both inter-and intraspecies genomic variation. We further predicted 17,903 carbohydrateactive enzymes and 2,717 secondary metabolite gene clusters, which we condensed into 455 distinct families corresponding to compound classes, 49% of which are only found in single species. We performed metabolomics and genetic engineering to correlate genotypes to phenotypes, as demonstrated for the metabolite aurasperone, and by heterologous transfer of citrate production to Aspergillus nidulans. Experimental and computational analyses showed that both secondary metabolism and regulation are key factors that are significant in the delineation of Aspergillus species.Peer reviewe

    Whitely : a true community

    No full text
    This Honors Thesis project was completed as a collaborative effort from three Honors college students who had participated previously in an immersive learning experience through Teacher's College. This thesis illustrates Whitely, an exemplary community in Muncie that, despite several biases and stereotypes, has overcome many obstacles and hardships. Drawing upon the knowledge and perception the three students had gained from working in the Whitely community, they created a video. Through this video, the goal was to capture the opinions and experiences of Ball State students and members of the Whitely community. The history of the Whitely community is also explored as well as the reasons that biases and stereotypes may have developed, and the video explains how the Whitely community plans to eradicate them.Thesis (B.?)Honors Colleg

    Whitely : a true community

    No full text
    This Honors Thesis project was completed as a collaborative effort from three Honors college students who had participated previously in an immersive learning experience through Teacher's College. This thesis illustrates Whitely, an exemplary community in Muncie that, despite several biases and stereotypes, has overcome many obstacles and hardships. Drawing upon the knowledge and perception the three students had gained from working in the Whitely community, they created a video. Through this video, the goal was to capture the opinions and experiences of Ball State students and members of the Whitely community. The history of the Whitely community is also explored as well as the reasons that biases and stereotypes may have developed, and the video explains how the Whitely community plans to eradicate them.Thesis (B.?)Honors Colleg
    corecore