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ABSTRACT The yeast Yarrowia lipolytica undergoes a morphological transition from
yeast-to-hyphal growth in response to environmental conditions. A forward genetic
screen was used to identify mutants that reliably remain in the yeast phase, which
were then assessed by whole-genome sequencing. All the smooth mutants identi-
fied, so named because of their colony morphology, exhibit independent loss of
DNA at a repetitive locus made up of interspersed ribosomal DNA and short 10- to
40-mer telomere-like repeats. The loss of repetitive DNA is associated with down-
regulation of genes with stress response elements (5'-CCCCT-3’) and upregulation of
genes with cell cycle box (5'-ACGCG-3') motifs in their promoter region. The stress
response element is bound by the transcription factor Msn2p in Saccharomyces
cerevisiae. We confirmed that the Y. lipolytica msn2 (YImsn2) ortholog is required for
hyphal growth and found that overexpression of Ylmsn2 enables hyphal growth in
smooth strains. The cell cycle box is bound by the Mbp1p/Swi6p complex in S.
cerevisiae to regulate G,-to-S phase progression. We found that overexpression of ei-
ther the YImbp1 or Ylswi6 homologs decreased hyphal growth and that deletion of
either YImbp1 or Ylswi6 promotes hyphal growth in smooth strains. A second for-
ward genetic screen for reversion to hyphal growth was performed with the
smooth-33 mutant to identify additional genetic factors regulating hyphal growth in
Y. lipolytica. Thirteen of the mutants sequenced from this screen had coding muta-
tions in five kinases, including the histidine kinases Ylchk1 and Ylnik7 and kinases of
the high-osmolarity glycerol response (HOG) mitogen-activated protein (MAP) kinase
cascade Ylssk2, Ylpbs2, and Ylhog1. Together, these results demonstrate that Y. lipoly-
tica transitions to hyphal growth in response to stress through multiple signaling
pathways.

IMPORTANCE Many yeasts undergo a morphological transition from yeast-to-hyphal
growth in response to environmental conditions. We used forward and reverse ge-
netic techniques to identify genes regulating this transition in Yarrowia lipolytica. We
confirmed that the transcription factor Ylmsn2 is required for the transition to hy-
phal growth and found that signaling by the histidine kinases Yichk1 and Ylnik1 as
well as the MAP kinases of the HOG pathway (Ylssk2, Ylpbs2, and Ylhog1) regulates
the transition to hyphal growth. These results suggest that Y. lipolytica transitions to
hyphal growth in response to stress through multiple kinase pathways. Intriguingly,
we found that a repetitive portion of the genome containing telomere-like and
rDNA repeats may be involved in the transition to hyphal growth, suggesting a link
between this region and the general stress response.
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any fungi harbor the ability to grow in either a yeast, pseudohyphal, or hyphal

form (1). Morphological plasticity allows fungi to adapt to and invade new
environments in response to external conditions. This trait, while essential for fungi in
natural environments, can be problematic for their use in industrial settings, such as
cultivation in bioreactors. The morphological switch between yeast and hyphal growth
can be initiated by nutritional, pH, temperature, and osmolarity cues (2-5). Industrial
utilization of dimorphic yeasts presents a particular challenge, as maximum economic
efficiency demands that bioreactors be run at high temperature and osmolarity using
low-quality nutrients, all of which may initiate the switch to hyphal growth.

Dimorphism is common in many species of ascomycete yeasts and has been most
thoroughly studied in the genetic model Saccharomyces cerevisiae and the closely
related opportunistic pathogen Candida albicans where the switch to hyphal growth is
important for infection (6). Environmental signals controlling hyphal growth regulate
specific genetic outputs through kinase cascades and calcium signaling pathways. The
adenylate cyclase Cyrlp is required for hyphal growth in yeasts (7, 8) and signals
through protein kinase A (PKA) to the transcription factor Efglp to promote the
yeast-to-hyphae transition (9, 10). Two mitogen-activated protein kinase (MAPK) cas-
cades integrate signals from different sources to position and regulate filamentous
growth in yeasts. The kinase Ste20p responds to the GTPase Cdc42p and activates the
Ste11p/Ste7p/Kss1p MAPK cascade to control polarized growth and bud site selection
(5, 11, 12), while the Ssk2p/Pbs2p/Hog1p MAPK cascade responds to osmotic and
oxidative stress in S. cerevisiae and C. albicans and regulates the yeast-to-hyphae
transition in both species (10, 13, 14).

Yarrowia lipolytica is a model industrial ascomycete yeast distantly related to S.
cerevisiae and C. albicans (15). The yeast-to-hyphae transition in this species has been
examined by proteomics and transcriptomics (16, 17) and has given clues to the
proteins involved. The transition is regulated by a number of transcription factors,
including those encoded by zncT (18), tecT (19), hoy1 (20), and the histone deacetylase
complex component gene sin3 (21). The Y. lipolytica msn2 (YImsn2) homolog (originally
identified as mhy1 in Y. lipolytica) is critical for the yeast-to-hyphae transition and is
positively regulated by the kinase Rim15p which itself is repressed by the Tor nitrogen
signaling pathway (22, 23). As in other yeasts, Ras GTPases (Ras1p and Ras2p) are
essential for the dimorphic transition and also likely signal through the transcription
factor Msn2p (24, 25).

In this study, we isolated strains of Y. lipolytica that fail to undergo the yeast-to-
hyphae transition. These smooth colony mutants do not form hyphae in a bioreactor,
making them more amenable as industrial bioproduction hosts. We characterized the
mutations present in the mutants obtained and mutations that promote the transition
to hyphal growth in a smooth strain to further elucidate the signaling pathways
regulating dimorphic growth in Y. lipolytica.

RESULTS

Isolation of Y. lipolytica mutants lacking filamentous growth. Y. lipolytica strain
FKP355 was passaged to allow accumulation of mutations and screened for lack of
filamentous growth from large colonies. Small slow growing colonies often did not
produce hyphae or did so only under certain conditions or after an extended period of
time. Approximately 500,000 colonies were screened from which 65 mutants were
isolated that did not appear to make hyphae. After isolation, these mutants were
further tested for filamentous growth after 2 weeks of incubation on YNB, YNB150, and
YPD agar (see Materials and Methods), as well as YPD and YNB150 liquid medium for
microscopic analysis. From those mutants, five smooth mutants (smooth-17, smooth-18,
smooth-19, smooth-33, and smooth-43) were identified that did not undergo transition
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FIG 1 Isolation of Y. lipolytica mutants that lack filamentous growth. Approximately 500,000 colonies were screened for smooth
morphology with no visible hyphae. From strain FKP355, five mutant strains were isolated that exhibit growth only as yeast (FKP500
to FKP504). The leu2-270 mutation was complemented in strain FKP503 to construct FKP514 and confirm the phenotype in a
prototrophic strain. Confocal microscopy confirmed yeast phase growth and lack of elongated cells or pseudohyphae in auxotrophic
and prototrophic smooth strains.

to hyphal growth morphology under any of the conditions tested (Fig. 1). Many of the
original 65 isolates produced short invasive hyphae into the agar or grew slowly and
were not considered further in this work. Approximately 100,000 colonies from each of
the five mutants were screened for reversion to hyphal growth habit from the smooth
phenotype. No revertants (<0.0002%) from any of the mutants were identified, con-
firming genetic stability.

Identification of mutations in Y. lipolytica mutants lacking fillamentous growth.
Each of the five mutants lacking filamentous growth and the wild-type parent (FKP355)
were sequenced using lllumina paired-end 150-base-pair sequencing to an average
depth of >13X to identify the causative mutations. This initial search revealed few
mutations limited to a single nucleotide polymorphism (SNP) affecting a tRNA in
smooth-17, a deletion in gene YaliOF20592g in smooth-19, and a noncoding SNP in
smooth-43. None of these candidate genes complemented the smooth phenotype
when expressed from an autonomously replicating plasmid (data not shown). To better
assess the mutants, genomic DNA from strain FKP355 was sequenced on the PacBio
platform to a depth of 279X, assembly and annotation of which are available at
http://genome.jgi.doe.gov/Yarlip1/Yarlip1.info.html. Using this assembled genome al-
lowed us to search for gaps in read coverage in the mutants and resulted in identifi-
cation of deletions in smooth-17, smooth-33, and smooth-43 strains. Interestingly, the
deletions are in the same general location near the end of scaffold 14 in all three of
these smooth mutants (Fig. 2A). Analysis of the mutated region of scaffold 14 revealed
that it ends in an array of polymorphic 5-TTAGTCAGGG-3’ tandem DNA repeats
previously described as the telomere repeat sequence in Y. lipolytica (26). Exceptionally
high sequencing read depth at this locus suggests that it is highly repetitive and
underrepresented in the genome assembly. We therefore sought to explore the
possibility of alternative assemblies of the DNA at the end of scaffold 14 to better
understand the composition of this mutated locus.

We hypothesized that the length of the repetitive DNA present at the end of scaffold
14 is much longer than the ~800 bp represented in the genome assembly and used
long PacBio sequencing reads from strain FKP355 to test this. We identified 3,786 reads
ranging from 117 to 29,910 bp in length (average of 3,548 and median of 2,331 bp) that
aligned to a unique portion of the genome near the end of scaffold 14. This subset of
reads was assembled using Canu (27) to assess the minimum length and content of the
repetitive DNA adjacent to the end of the unique part of scaffold 14 without assembly
interference from additional repetitive reads from different loci. From these reads,
seven alternative contigs to scaffold 14 were assembled that mapped to a variety of
scaffolds within the reference genome, confirming the repetitive nature of the locus.
We aligned the 150-bp Illumina sequencing reads from strain FKP355 and the five
smooth mutants to these new contigs and identified mutations. Interestingly, six out of
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FIG 2 smooth strains have mutations in repetitive regions of the genome. Coverage from high-throughput 150-bp paired-end
lllumina sequencing from strain FKP355 (wild type) and five smooth mutant strains. Colored bases indicate polymorphic loci
where reads align with SNPs at a rate greater than that expected from incorrect base calls. (A) Regions with no coverage are
detected in smooth-17, smooth-33, and smooth-43 mutants at the end of scaffold 14 after alignment to the FKP355 reference
genome. (B) Raw PacBio reads with homology to the single-copy region at the end of scaffold 14 (from 1 to 12 kb) were
reassembled and analyzed for mutations not detected from the curated genome assembly. An example of an alternative
assembly of the region detects a deletion in smooth-19 not seen in the reference assembly. (C) All five smooth mutants exhibit
a different polymorphism rate than the wild-type rate at a transition point between a high-copy-number transposon-

containing region and a moderate-copy-number region of short, tandem repeats.

seven of these alternative contigs harbor mutations in at least one of the smooth strains
(Fig. 2B and C), while the seventh is a complete assembly of the ribosomal DNA (rDNA)
locus (18S, 5.8S, and 28S rRNA) (28) with adjacent 5'-TTAGTCAGGG-3' tandem repeats.
These results suggest that all five smooth mutants harbor mutations in a related locus
with short tandem repeats and rDNA repeats.

Repeat analysis of the FKP355 genome and smooth mutants. Given that the
mutations identified in the smooth strains affected tandem repetitive DNA, we decided
to more thoroughly assess the repetitive DNA content of the FKP355 genome. To avoid
biases from the genome assembly process, we again examined the DNA directly in
150-bp lllumina sequencing reads from strain FKP355 for the presence of tandem
repeats to identify and define all the telomere-like repetitive sequences present in this
strain. All possible tandem duplications of unit size 1 to 75 bp were quantified in the
raw sequencing reads, and the copy number of each repeat was estimated as follows:

Times found X Genome size
Total reads X (Read length — Repeat length + 1)

Copy number =

The most overrepresented tandem repeat sequences identified in the FKP355 genome
correspond to the 5'-TTAGTCAGGG-3' 10-mer found at the end of scaffold 14 as well
as derivations on a 5'-TTGACGAGGCAC-3’ 12-mer on its own and in combination with
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FIG 3 smooth strains have reduced repetitive DNA content. (A) lllumina 150-bp sequencing reads from
strain FKP355 were systematically analyzed for the presence of all possible tandem duplications with a
repeat unit length of 1 to 75 bp and quantified. Identification of phased repeat units with similar coverage
was used to infer arrays of tandem repeats longer than a simple duplication. Colors indicate overlapping
sequence motifs found in similar repeat sequences. (B) The fraction of 150-bp sequencing reads from the
wild-type and smooth strains containing high-frequency tandem duplications of 10, 12, 28, and 40 bp in
length. (C) The fraction of 150-bp sequencing reads from the wild-type and smooth strains that align to the
FKP355 rDNA repeat.

a 5'-TTGACGAGGCGCGTGC-3" 16-mer (Fig. 3A). A number of low-copy-number poly-
morphic variations on these repeat sequences were also identified. Long PacBio
sequencing reads from strain FKP355 containing tandem duplications of the 5'-TTAG
TCAGGG-3' repeat unit were identified and aligned to the FKP355 genome assembly to
identify additional repetitive and/or single-copy loci adjacent to this repeat array but
found the end of scaffold 14 as the only nonrepetitive assembled portion of the
genome adjacent to a 5'-TTAGTCAGGG-3' repeat array. This result suggests that either
a single large 5'-TTAGTCAGGG-3' repeat array is present in the genome or that
additional 5'-TTAGTCAGGG-3' repeat arrays are present but bordered by alternative
unassembled repetitive DNA sequences consistent with subtelomere structural ar-
rangements in yeast (29) and humans (30).

We identified individual long PacBio reads from strain FKP355 containing each of the
short tandem 10- to 40-bp repeat elements as well as those mapping to the assembled
rDNA locus to test how often different repeat sequences cooccurred. Roughly 11% of
the long reads with a tandem 10-mer 5'-TTAGTCAGGG-3' repeat also mapped to the
rDNA locus, while a higher percentage of the reads with a 5'-TTGACGAGGCAC-3’
derived tandem repeat (49% of the 12-mer, 52% of the 28-mer, and 32% of the 40-mer)
also mapped to the rDNA locus. Together, these results suggest that short tandem
repetitive DNA is interspersed with the rDNA repeats.

We hypothesized that changes in the repetitive DNA content of the genome might
underlie the smooth phenotype. Thus, the number of Illumina sequencing reads
containing each of the different repeat units was assessed in the wild-type strain and
each of the smooth mutants to quantify repetitive DNA content in a reference genome
agnostic manner (Fig. 3B). All the smooth mutants have a decrease in short tandem
repetitive DNA content with the greatest losses in the smooth-17 and smooth-33
mutants. These two mutants present a similar deletion when mapped to the FKP355
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TABLE 1 Enriched Gene Ontology terms in the smooth-33 mutant?

GO term FDR

Upregulated in the smooth-33 mutant
DNA repair 1.2E—05
Regulation of transcription from RNA polymerase Il promoter 5.7E—04
DNA recombination 5.8E—03
DNA replication initiation 1.7E—-02
Cell cycle process 3.3E—-02
Mismatched DNA binding 3.3E-02
Nucleosome assembly 4.2E—02

Downregulated in the smooth-33 mutant

Small-GTPase-mediated signal transduction 1.8E—03
Steroid biosynthetic process 4.0E-03
GTP catabolic process 49E-03
Cytokinesis 1.7E—02
Nucleocytoplasmic transport 2.7E—02
Cellular lipid metabolic process 3.5E—-02
Oxygen transport 3.6E—02
Membrane raft organization 3.6E—02
Chitin metabolic process 4.2E—-02
Response to toxic substance 4.2E—02
Regulation of molecular function 4.5E—02
Fungal-type cell wall organization 4.5E—-02
Microtubule-based movement 4.9E-02

aAnalysis of the top 1,000 up- and downregulated genes identified biological process Gene Ontology (GO)
terms specifically overrepresented in the smooth-33 mutant (false-discovery rate [FDR] of <0.01).

reference genome (Fig. 2). The number of reads mapping to the rDNA locus was also
assessed, as there appears to be at least some rDNA that is genetically linked to the end
of scaffold 14 as well as the 10-mer 5'-TTAGTCAGGG-3’ tandem repeats. All the smooth
mutants have relatively fewer reads that map to the rDNA locus in a ratio similar to that
of the short tandem repeat sequences (Fig. 3C). This suggests that the rDNA and the
short tandem repeats together make up a repetitive part of the genome that is lost in
the smooth mutants. We unsuccessfully attempted to reconstruct these complex
mutations by transforming the wild-type parent (FKP355) with resistance marker con-
structs designed to randomly replace large tracts of repetitive DNA (data not shown).
Thus, while the loss of repetitive DNA in the smooth mutants is intriguing, it has not
been verified to be the cause of the smooth phenotype.

Transcriptome analysis of a smooth mutant. We compared gene expression from
a prototrophic smooth-33 mutant (FKP514) to a prototrophic wild-type strain of the
same genetic background (FKP391) in chemostat culture to assess the effect on gene
expression. Differentially expressed genes were analyzed for enrichment of Gene
Ontology terms to assess specific biological processes perturbed in the smooth-33
mutant (Table 1). Genes associated with DNA replication and repair as well as tran-
scriptional regulation are more highly expressed in the smooth-33 strain, while genes
associated more generally with signaling, as well as membrane and cell wall biochem-
istry are downregulated. The promoter regions of differentially expressed genes were
analyzed for enrichment of short DNA motifs to identify regulatory pathways acting
through sequence-specific DNA-protein interactions. Genes upregulated in the
smooth-33 mutant are enriched for 5'-ACGCG-3’ motifs in their promoters, while genes
downregulated in the smooth-33 mutant are enriched for 5'-CCCCT-3’ motifs in their
promoter region (E value < 0.05). We assessed the differential expression levels of
genes with zero or more of these motifs near the transcription start site to confirm a
specific effect on gene expression (Fig. 4). The presence of 5-ACGCG-3’ near the
transcription start site has a slight positive effect on expression level in the smooth-33
mutant. This is primarily associated with the presence of no less than two 5'-ACGCG-3’
sites within 200 bp 5’ and 1,000 bp 3’ of the transcription start site. The presence of
5'-CCCCT-3’" both 5" and 3’ of the transcription start site is associated with a large
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FIG 4 Effect of smooth-33 on expression of genes with specific DNA motifs near their transcription start
site. The number of ACGCG and CCCCT motifs on each strand of DNA was determined (from 0 to 2 sites)
between the transcription start site (labeled 0) and a given distance. The given distances shown are 200
to 2,000 bp in 200-bp intervals, both up- and downstream of the transcription start site. For each interval,
the average difference in expression between FKP514 (smooth-33) and FKP391 (wild type) during
chemostat cultivation is shown. Note that the presence of more CCCCT motifs close to the transcription
start site is generally associated with decreased expression in the smooth-33 mutant, while the presence
of more than one ACGCG site very near and 3’ of the transcription start site is associated with increased
expression in the smooth-33 mutant.

negative effect on the expression level in the smooth-33 mutant in a manner that
increases with the number of 5’-CCCCT-3’ sites.

We searched the Jaspar core fungal motifs database (31) for proteins that are known
to interact with either of these motifs. A number of transcription factors from S.
cerevisiae have been identified that interact specifically with the 5'-CCCCT-3' DNA motif
via their C2H2 zinc finger domain(s). These transcription factors include Msn4p, Rgm1p,
Reilp, Rph1p, Msn2p, Gis1p, Com2p, and Usv1p (E value < 1). Comparison of these
factors with proteins encoded by the Y. lipolytica genome (32) identified four C2H2 zinc
finger domain-containing homologs (Table 2). The 5'-ACGCG-3" motif interacts with the
cell cycle regulator proteins Mbp1p, Swi6p, and Swi4p in S. cerevisiae (E value < 1) via
an APSES DNA interaction domain (33). Comparison of these proteins with proteins
encoded by the Y. lipolytica genome (32) identified two homologs (Table 2). We
attribute the presence of fewer genes to the whole-genome duplication event in S.
cerevisiae which generated many paralogs represented by a single gene in Y. lipolytica
(34).

Reverse genetics screen. We hypothesized that downregulation of genes with
5'-CCCCT-3’ promoter motifs in the smooth-33 strain is controlled by a C2H2 zinc finger
transcription factor. Of the four transcription factors predicted to bind this motif in Y.
lipolytica, one (JGI protein ID 143137; YImsn2) is very significantly downregulated
(Table 2), which suggests that it may be an activator that is failing to regulate genes
important for the yeast-to-hyphae transition in the smooth-33 mutant. To test this, we
overexpressed YImsn2 using a constitutive promoter in a smooth-33 strain and deleted
it in the wild-type parent used for the mutagenesis screen. We found that overexpres-
sion of Ylmsn2 restores hyphal growth in the smooth-33 mutant, while deletion of

TABLE 2 Expression of Y. lipolytica genes predicted to regulate the smooth phenotype?

JGI protein ID S. cerevisiae homolog(s) Log, fold change P value
5'-CCCCT-3’ binding
143137 msn2, msn4, com2 —2.63 3.46E—04
121652 reil 0.90 4.68E—03
110816 rph1, gis1 0.61 4.76E—02
129649 usvl, rgml 0.20 1.82E—01
5-ACGCG-3’ binding
13938 swi6 0.84 2.98E—03
129847 swi4, mbp1 0.84 6.32E—03

aFold change and P values represent the change in expression level between the smooth-33 and wild-type
strains during chemostat cultivation.
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- (FKP391)  Ylmsn2 (FEB248) - (FKP552) Ylswi6+ (FEB240) Yimbpl+ (FEB237)

Y 3

- (FKP640)  Yimsn2+ (FEB242) - (FKP514)  AYlswi6 (FEB252) AYImbp1 (FEB249

0 , &

FIG 5 YImsn2p and the MBP complex regulate formation of hyphae. YImsn2p is predicted to interact with
CCCCT promoter motifs, while the MBF complex (composed of Ylswi6p and Yimbp1p) is predicted to
interact with ACGCG motifs. YImsn2 was overexpressed in a smooth-33 background and deleted in the
parental hyphal background used for mutagenesis (FKP355). Conversely, Ylswi6 and Ylmbp1 were inde-
pendently deleted in a smooth-33 background and overexpressed in the parental background. Strains were
cultured on YNB agar for 3 days at 28°C prior to examination of hyphae formation and imaging. Detailed
genotypes are listed in Table 4.

wild-type

smooth-33

YImsn2 results in loss of hyphal growth in wild-type Y. lipolytica, confirming its impor-
tant role in regulation of this process and promotion of hyphal induction when
expressed (Fig. 5).

We hypothesized that upregulation of genes with 5-ACGCG-3’ promoter motifs in
the smooth-33 strain is controlled by Ylswi6 (JGI protein ID 13938) and Yimbp1 (JGI
protein ID 129847), which form a complex that regulates the G,/S phase transition in
S. cerevisiae (35). Both of these genes are significantly upregulated in the smooth-33
mutant (Table 2), suggesting promotion of the G,/S transition during yeast phase
growth. We hypothesized that lower expression of these important cell cycle regulators
in wild-type strains is associated with the transition to hyphal growth. To test this, we
overexpressed Ylswi6 or YImbp1 using a constitutive promoter in the wild-type parent
strain and deleted them in the smooth-33 strain. We found that deletion of Ylswi6 or
YImbp1 restores some hyphal growth in the smooth-33 mutant, while overexpression of
Ylswi6 or YImbp1 results in reduced hyphal growth in wild-type Y. lipolytica, confirming
that these genes play a role in regulation of the yeast-to-hyphae transition process
(Fig. 5).

Isolation of mutants reverting to hyphal growth in the smooth-33 background.
The success of our reverse genetic screen suggested that we may be able to identify
additional factors regulating the yeast-to-hyphae transition via a forward genetic
screen. Prototrophic Y. lipolytica smooth-33 strain FKP514 was thus mutagenized with
ethyl methanesulfonate (EMS) and plated on YNB agar plates to screen for colonies
reverting to hyphal growth typical of wild-type Y. lipolytica on YNB. Approximately
500,000 colonies were screened, but no mutants were found that had reverted to a
colony morphology typical of the wild type. However, 100 mutants were isolated that
did not make completely smooth colonies. These mutants often appeared ruffled as
colonies and upon microscopic observation appeared to have elongated cells and/or
hyphae around their margins.

Identification of mutations promoting the yeast-to-hyphae transition in the
smooth-33 background. Twenty-eight of the hyphal mutants were sequenced using
lllumina paired-end 150-bp sequencing and compared to the FKP355 reference ge-
nome to identify causative mutations. This initial search identified many genes with
nonsynonymous mutations. Five genes were identified with nonsynonymous muta-
tions in more than one mutant strain (JGI protein IDs 113409, 140296, 127631, 122144,
and 109080), indicating that these genes are likely to be either the causative mutation
or present at a hypermutable locus. The screen also identified four genes (JGI protein
IDs 124736, 128138, 131882, and 129277) hit in only one mutant that are implicated in
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TABLE 3 High-confidence genes involved in yeast-to-hyphae transition?

JGI protein ID  S. cerevisiae BlastP®  No. of strains  Predicted mutations recovered

113409 sinT (nik1) 5 E342G, S441T, 1536M, G584S, M598K
140296 ctsl 4 K2*, W134*, G285E, G284V/E837D
127631 ssk2 3 G1190D, P555H, R526P

109080 sin1 (chk1) 2 T1290M, E1415K

122144 pbs2 2 2 x G371R

124736 hog1 1 S335*

128138 hym1 1 L103P

131882 Irg1 1 G938C

129277 mih1 1 Y476

aGenes with mutations in independent mutant strains as well as genes found in only one strain but with few
or no other nonsynonymous mutations. Eight mutant strains contained many nonsynonymous mutations in
unique gene hits and are not shown.

bGenes in parentheses represent the best BlastP hit from C. albicans.

the yeast-hyphal transition in other species and present in a mutant with a low
background mutation rate, indicating that they are likely to be the causative mutation
(summarized in Table 3). Eight of the mutant strains had many nonsynonymous
mutations, making prediction of a likely causative mutation difficult.

Five of the high-confidence gene hits appear to be homologous to genes in the
high-osmolarity glycerol response (HOG) MAPK signaling pathway of S. cerevisiae. We
recovered three independent alleles of the MAPK kinase kinase YLssk2, two indepen-
dent mutants with the same allele of the MAPK kinase Ylpbs2, and one mutant with a
premature stop mutation in the MAPK Ylhog! (Fig. 6 and Table 3). In addition, we
identified mutations in two genes with similarity to the sin7 histidine phosphotransfer
kinase, which regulates the HOG MAPK cascade in S. cerevisiae (36, 37). Further
investigation into the structure of the mutated genes within the context of the histidine
kinase gene family in Y. lipolytica revealed that proteins 113409 and 109080 (JGI protein
IDs) are not orthologous to the sin1/ssk1 two-component regulator (38) known to
regulate the HOG MAPK cascade in S. cerevisiae. Rather, they represent proteins not
found in S. cerevisiae that are orthologous to the nik7 and chk1 genes of C. albicans
respectively (39, 40) (Fig. 7A). In C. albicans, both the histidine kinases nik1 and chk1, as
well as the sinT ortholog are involved in hyphal formation (41). Disruption of any of
these genes impairs hyphal formation, while double disruption of sin7 or nik1 in
combination with chk1 partially restores hyphal formation (41). We disrupted Ylchk7 in
both the wild-type and smooth-33 genetic background to assess its function in Y.
lipolytica and to partially validate the results of the genetic screen. While YlchkT1 is not
required for hyphal formation, deletion in the smooth-33 background partially restores
hyphal formation consistent with the results obtained for the Ylchkl point mutants
(Fig. 8).

The mutations isolated in Ylnik1 are nonrandomly distributed (Fig. 7B). In Ylnik1, all
five mutations occur within a series of HAMP domain repeats (42). These repeats are
associated with fungicide sensing (43-46) and mutation of the HAMP domain in
bacterial receptor histidine kinases is associated with constitutive activation (47-49).
The very specific site of the five mutations present in Ylnik7 from amino acids 342 to
598 (Table 3) and the lack of any putative nonfunctional mutations (e.g., premature
stop codons or kinase functional domain mutations) suggests that Ylnik1p may be
constitutively activated in these mutants and that the hyphal phenotype is caused by
constitutive signaling rather than loss of function.

Three genes were recovered in single mutant strains known to be involved in
morphogenesis in S. cerevisiae, including hym1 (50), the GTPase-activating protein Irg1
(51), and the tyrosine phosphatase mih1 (52). Four independent mutations were found
in the endochitinase ctsT in strains with weaker colony morphology phenotypes typical
of hyphal growth. Close observation revealed the morphology phenotype was due to
a cell separation defect, as has been found in S. cerevisiae (53), rather than a switch to
hyphal growth. These mutants were not considered further in this work.
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wild-type smooth-33 nik1®%¢
AR

nl‘k15441T nl‘kll536M nl‘k165845
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%3
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FIG 6 Mutants with a hyphal reversion phenotype in smooth-33. FKP514 (smooth-33) was mutagenized,
and colonies exhibiting a transition to hyphal growth were isolated and sequenced. Mutant strains were
plated on YNB agar, and isolated single colonies were imaged after 48 h at 28°C. Gene names shown are
based on orthologs from S. cerevisiae and C. albicans. Mutations shown are the highest likelihood
candidate identified after sequencing of each mutant.

DISCUSSION

Development of yeast strains that do not switch between yeast and hyphal growth
is critical for the utilization of fungi in reproducible bioprocesses. In this work, we
isolated five spontaneous Y. lipolytica mutants that grow only in the yeast phase and
do not form hyphae when cultivated on solid agar or in liquid medium in flasks or
during bioreactor cultivation (Fig. 1). These mutants, which we named smooth mutants,
were screened for rapid growth and nonreversion of the phenotype to identify strains
useful for genetic engineering efforts toward the production of biofuels and chemicals
with a Y. lipolytica host chassis. Genomic analysis of the smooth mutants revealed that
all share mutation of a repetitive locus resulting in loss of short repetitive telomere-like
DNA and rDNA repeats (Fig. 2 and 3). Transcriptome analysis of a selected mutant
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FIG 7 Histidine kinases in Y. lipolytica. (A) Phylogenetic reconstruction of selected histidine kinases from ascomycete fungi. Protein
sequences from the histidine kinases of Y. lipolytica with similarity to SInTp (FKP355 JGI protein ID 128287, 113409, 109080, 128802, and
126630) were used as bait to BlastP search the proteomes of Y. lipolytica, S. cerevisiae, C. albicans, Lipomyces starkeyi, Schizosaccharomyces
pombe, Taphrina deformans, Ascobolus immerses, Monacrosporium haptotylum, Aspergillus nidulans, Stagnospora nodorum, Cladonia grayi,
Botrytis cinerea, Neurospora crassa, and Xylona heveae. The BlastP hits were aligned using MUSCLE and analyzed by the maximum likelihood
method with 200 bootstrap replicates to define the relationships between the Y. lipolytica genes and those from other species. (B) Protein
domains from YInik1p were predicted by InterProScan (90). The kinase domain in YInik1p is predicted to be an S/T protein kinase. Note that

all the mutations recovered occur in the HAMP domain. The sites of mutations are indicated by asterisks.

(smooth-33) revealed specific DNA motifs in the promoter regions of up- and down-
regulated genes (Fig. 4). These short DNA motifs implicated specific regulatory proteins
important for maintenance of the yeast form which we confirmed by deletion and
overexpression analysis (Fig. 5).

Our analysis identified the homolog of the stress response regulator YImsn2 as a
primary regulator of the yeast-to-hyphae transition in smooth mutants. This gene,
previously identified as mhy1 in Y. lipolytica (23) is essential for the yeast-to-hyphae
transition (Fig. 5) and activates gene expression in response to general stresses by
binding to the stress response element 5’-CCCCT-3’ (23, 54). Loss of signaling through
Yimsn2 in the smooth strains and frequent hyphal growth in the wild-type strain
suggests that our typical laboratory growth conditions (YNB medium at 28C) are
stressful to Y. lipolytica. We observe more frequent initiation of hyphal growth on
medium with a higher C/N ratio and less hyphae with a rich nitrogen source like
peptone, which implicates nitrogen quantity and quality in this response (55). Msn2p is

EZ R

wild-type (FKP391) Achkl1 (FEB492) smooth-33 (FKP514) smooth-33, Achkl (FEB494)

FIG 8 Yichk1 regulates formation of hyphae. Ylchk1 was deleted in wild-type and smooth-33 genetic backgrounds
by replacement with leu2. Ylchk1 is not required for the transition to hyphal growth morphology, but deletion

results in limited reversion to hyphal morphology in smooth-33.
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regulated by the TORC1-Sch9-Rim15 signaling pathway in Y. lipolytica (22), suggesting
nutrient availability may be the inducer of hyphal growth in these experiments.

All five smooth strains exhibit what appear to be similar mutations in a poorly
assembled, repetitive region of the genome represented by the end of scaffold 14 in
the parent strain genome assembly (http://genome.jgi.doe.gov/Yarlip1/Yarlipl.home
.html) (Fig. 2). Scaffold 14 ends in tandem 5’-TTAGTCAGGG-3' repeats characteristic of
Y. lipolytica telomeres (26); however, the mutation in some of the smooth strains,
particularly the smooth-43 strain, extends into the unique portion of scaffold 14 and
initially alerted us to examine the repetitive DNA content of the wild-type and smooth
strains. An unbiased search for short tandem repeats confirmed that the 5’-TTAGTCA
GGG-3' repeats are common and identified additional repetitive tandem DNA se-
quences present in the Y. lipolytica genome that are likely to constitute the telomere
and subtelomere regions. Analysis of long PacBio reads found that many of these short
repeats are bordered by rDNA repeats (28), and all repeat types are lost in similar
quantity within each of the five smooth mutants (Fig. 3). Copy number variation in the
rDNA repeats has been reported in filamentous fungi and yeasts and affects general
physiological parameters, such as growth rate (56-59) and in C. albicans is associated
with morphological mutants (60).

The complete mechanism governing loss of filamentous growth in the smooth
mutants remains unclear. Our results indicate that expression changes in the smooth
strains are governed primarily by reduced activation of genes with stress response elements
by the transcription factor Msn2p (54, 61). Activation of the general stress response via
Msn2p occurs through phosphorylation of the transcription factor by PKA and nuclear
localization (62-64) and is dependent on cAMP signaling in response to a variety of
nutritional and environmental stresses (65). We found that cell cycle progression genes are
upregulated in the smooth-33 mutant and that disruption of either component of the G,/S
transition-promoting MBF complex (Mbp1p/Swi6p) (66, 67) conferred a sporadic low-level
return to filamentous growth (Fig. 5). Together, these results suggest that the loss of
repetitive telomeric and ribosomal DNA repeats is reducing signaling via the general stress
response and promoting cell cycle progression.

We performed a forward genetic screen for reversion to hyphal growth in a
prototrophic smooth-33 strain to better understand the signaling occurring in response
to the loss of repetitive telomeric and ribosomal DNA at the smooth locus (selected
mutant phenotypes in Fig. 6). From this screen, 28 mutants were sequenced by
high-throughput sequencing, and interestingly, we did not identify strains with muta-
tions in YImbp1 or Ylswi6. This suggests that the screen was not exhaustive for recovery
of mutants with a sporadic reversion phenotype, as we sequenced the subset with the
strongest hyphal phenotype maintained in all colonies after passaging and replating.
Examination of the mutations in these strains implicates the histidine kinases Ylnik7 and
Yichk1 as well as the core components of the HOG MAPK cascade (Ylssk2, Ylpbs2, and
Ylhog1) in regulation of the yeast-to-hyphae transition in Y. lipolytica. In C. albicans, nik1
and chkT are required for normal hyphal growth (41). Here we found that YlchkT is not
required for hyphal growth (Fig. 8). The mutations recovered in Ylnik1 all occur only in the
sensory HAMP domain (Fig. 7). Deletion of the HAMP domain in C. albicans nik1 strain
results in constitutive signaling as well as phosphorylation and activation of Hog1p (68). No
mutations predicted to be nonfunctional were recovered in YInik1, suggesting that rever-
sion to hyphal growth is due to constitutive or altered activation of this kinase.

Nik1p and Chk1p represent the common type Il and type X histidine kinases that
govern morphogenesis and enable pathogenicity in many fungi (69). Localization
studies in Candida guilliermondii found that unlike the membrane-localized type VI
histidine kinase, SIn1p, Nik1p, and Chk1p both localize to the cytosol and nucleus (70).
While both Nik1p and Chk1p have been demonstrated to respond to general stresses
by signaling to downstream targets, their method of sensing stresses has not been
determined. Genetic studies have found that the nonkinase domains are required for
sensing stresses, but further work is needed to determine how extracellular stresses
alter the structure and activity of these cytoplasmic proteins (70). These histidine
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TABLE 4Y. lipolytica strains used in this study

Strain Genotype Reference
FKP355 matA leu2-270 xpr2-332 axp-2 ku70:hph* 55

FKP391 matA leu2-270::leu2* xpr2-332 axp-2 ku70:hph+ 55

FKP500 matA leu2-270 xpr2-332 axp-2 ku70:hph* smooth-17 This work
FKP501 matA leu2-270 xpr2-332 axp-2 ku70:hph™ smooth-18 This work
FKP502 matA leu2-270 xpr2-332 axp-2 ku70::hph* smooth-19 This work
FKP503 matA leu2-270 xpr2-332 axp-2 ku70:hph* smooth-33 This work
FKP504 matA leu2-270 xpr2-332 axp-2 ku70:hph* smooth-43 This work
FKP514 matA leu2-270:leu2 xpr2-332 axp-2 ku70:hph* smooth-33 This work
FEB248 matA leu2-270 xpr2-332 axp-2 ku70:hph™ msn2:leu2+ This work
FKP552 matA leu2-270 xpr2-332 axp-2 ku70:hph* expip-leu2* This work
FEB237 matA leu2-270 xpr2-332 axp-2 ku70:hph™ explp-mbp1:leu2+ This work
FEB240 matA leu2-270 xpr2-332 axp-2 ku70:hph* explp-swi6:leu2+ This work
FKP640 matA leu2-270 xpr2-332 axp-2 ku70:hph* smooth-33 exp1p-:leu2+ This work
FEB242 matA leu2-270 xpr2-332 axp-2 ku70:hph* smooth-33 exp1p-msn2:leu2™ This work
FEB249 matA leu2-270 xpr2-332 axp-2 ku70:hph* smooth-33 mbp1:leu2* This work
FEB252 matA leu2-270 xpr2-332 axp-2 ku70:hph™ smooth-33 swi6:leu2 This work
FKP672 matA leu2-270::leu2* xpr2-332 axp-2 ku70:hph* smooth-33 mih1Y476* This work
FKP673 matA leu2-270:leu2* xpr2-332 axp-2 ku70:hph* smooth-33 Irg16938¢ This work
FKP675 matA leu2-270:leu2™ xpr2-332 axp-2 ku70:hph* smooth-33 nik1£342¢ This work
FKP677 matA leu2-270:leu2 xpr2-332 axp-2 ku70:hph™ smooth-33 nik15441T This work
FKP681 matA leu2-270::leu2* xpr2-332 axp-2 ku70:hph* smooth-33 nik1/536M This work
FKP682 matA leu2-270:leu2™ xpr2-332 axp-2 ku70:hph™ smooth-33 nik16°845 This work
FKP683 matA leu2-270:leu2* xpr2-332 axp-2 ku70:hph* smooth-33 nik1M598K This work
FKP684 matA leu2-270:leu2* xpr2-332 axp-2 ku70:hph* smooth-33 pbs2¢371R This work
FKP686 matA leu2-270:leu2* xpr2-332 axp-2 ku70:hph* smooth-33 ssk2G11900 This work
FKP687 matA leu2-270:leu2* xpr2-332 axp-2 ku70:hph* smooth-33 hog1#335" This work
FKP689 matA leu2-270:leu2* xpr2-332 axp-2 ku70:hph™ smooth-33 chk17'29oM This work
FKP690 matA leu2-270:leu2* xpr2-332 axp-2 ku70:hph* smooth-33 ssk2P>>5H This work
FKP691 matA leu2-270:leu2* xpr2-332 axp-2 ku70:hph™ smooth-33 ssk2R>26P This work
FKP694 matA leu2-270::leu2* xpr2-332 axp-2 ku70:hph* smooth-33 chk1£7415K This work
FKP695 matA leu2-270::leu2* xpr2-332 axp-2 ku70:hph* smooth-33 pbs&371% This work
FKP730 matA leu2-270:leu2* xpr2-332 axp-2 ku70:hph* smooth-33 hym1t103P This work
FEB492 matA leu2-270 xpr2-332 axp-2 ku70:hph* chkl:leu2* This work
FEB494 matA leu2-270 xpr2-332 axp-2 ku70:hph* smooth-33 chk1:leu2* This work

kinases, particularly nik1, are implicated in activation of the HOG pathway. However, it
remains to be determined whether this affect is direct (e.g., through phosphorylation
of HOG MAPK components) or a result of stress caused by their constitutive signaling.

In summary, we examined Y. lipolytica mutants that do not transition to hyphal
morphology under conditions relevant to industrial production of biofuels and com-
modity chemicals. We identified mutations in the repetitive DNA of these strains that
reduce signaling through the general stress response pathway via an unknown mech-
anism. Reversion to hyphal growth is possible in these mutants via signaling or lack
thereof by Ylmsn2, the HOG MAPK cascade components (Ylssk2, Ylpbs2, and Ylhog1),
and the histidine kinases encoded by YInik7 and Ylchk1. This work builds upon our
understanding of the dimorphic transition in Y. lipolytica and confirms that the path-
ways regulating this morphological switch are conserved with other ascomycete yeasts.
How the loss of repetitive DNA reduces the msn2-mediated stress response remains an
enigma. Eleven of the mutants recovered in the reversion to hyphal growth screen
warrant further analysis and may shed light on the connection between the loss of
repetitive DNA and reduction of the stress response.

MATERIALS AND METHODS

Yeast cultivation and forward genetic screens for nonhyphal mutants. All Y. lipolytica strains
used in this study (Table 4) were maintained in YNB (1.7 g/liter yeast nitrogen base without amino acids
and ammonium sulfate but with 20 g/liter glucose and 5 g/liter ammonium sulfate) or YPD (10 g/liter
peptone, 10 g/liter yeast extract, 20 g/liter glucose) liquid medium at 28°C and 200 rpm unless otherwise
noted. Auxotrophs were supplemented with 0.1 g/liter leucine when appropriate. Frozen stocks were
maintained at —80°C in 15% glycerol. To isolate smooth mutants, Y. lipolytica strain FKP355 was passaged
daily in YPD for 2 weeks to allow accumulation of mutations and plated at a density of 10,000 cells per
plate on YNB agar plates. Plates were incubated 72 h at 28°C to allow development of colonies. Large
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colonies without hyphae were streaked onto fresh YNB plates to obtain pure mutant strains. Purified
mutant strains were inoculated onto YPD, YNB, and YNB150 (1.7 g/liter yeast nitrogen base without
amino acids and ammonium sulfate but with 25 g/liter glucose and 0.367 g/liter ammonium sulfate) agar
plates to confirm the phenotype. To isolate smooth mutants reverting to hyphal growth, Y. lipolytica
strain FKP514 was mutagenized with ethyl methanesulfonate (EMS) (71) and plated at a density of 10,000
cells per plate on YNB agar plates. Plates were incubated 72 h at 28°C to allow development of colonies.
Colonies exhibiting ruffled morphologies characteristic of the transition to hyphal growth were streaked
onto fresh YNB plates to obtain pure mutant strains. Chemostat cultivation was performed with a dilution
rate of 0.05 per hour at 30°C in a 1.2-liter bioreactor (DASGIP, Jilich, Germany) with a working volume
of 750 ml at pH 3.5, controlled with 2 M KOH. Dissolved oxygen was kept above 30% with a stirrer rate
of 600 rpm and an airflow rate of 1v.v.m. The growth medium contained 25 g/liter glucose, 0.5 g/liter
(NH,),S0,, 5.96 g/liter K,SO,, 3 g/liter KH,PO,, 0.5 g/liter MgSO,,-7H,0, vitamins and trace metal solutions
(72) and 125 pl antifoam 204 (Sigma-Aldrich, St. Louis, MO, USA). Samples for transcriptomic analysis
were taken when the chemostats reached steady state, defined as stable CO, and O, outflow and optical
density, which was achieved after circa 120 h.

Reference genome sequencing and assembly. Genomic DNA and RNA were isolated from Y.
lipolytica strain FKP355 (55) using a yeast genomic DNA purification kit (AMRESCO, Solon, OH) and TRizol
reagent (Invitrogen, Carlsbad, CA), respectively. One microgram of DNA was sheared to 10 kb using the
g-TUBE (Covaris). The sheared DNA was treated with DNA damage repair mix followed by end repair and
ligation of SMRT adapters using the PacBio SMRTbell Template Prep kit (PacBio). The SMRTbell templates
were then purified using exonuclease treatments and size selected using AMPure PB beads. Sequencing
primer was then annealed to the SMRTbell templates, and Version P6 sequencing polymerase was bound
to them. The prepared SMRTbell template libraries were then sequenced on a Pacific Biosciences RSII
sequencer using Version C4 chemistry and 4-h sequencing movie run times. Filtered subread data were
assembled together with Falcon version 0.4.2 (https://github.com/PacificBiosciences/FALCON) to gener-
ate an initial assembly. Mitochondria were then assembled separately using the corrected preads with
Celera version 8.3 and subsequently polished with Quiver. It was then used to remove mitochodrial data
from the preads. A secondary Falcon assembly was generated using the filtered preads with Falcon
version 0.4.2 and polished with Quiver version smrtanalysis_2.3.0.140936.p5 (https://github.com/Pacific
Biosciences/GenomicConsensus). The final genome assembly was annotated using the JGI Annotation
Pipeline (73).

Stranded cDNA libraries were generated using the Illlumina Truseq Stranded RNA LT kit. mRNA was
purified from 1 pg of total RNA using magnetic beads containing poly(T) oligonucleotides. mRNA was
fragmented and reverse transcribed using random hexamers and SSlI (Invitrogen) followed by second
strand synthesis. The fragmented cDNA was treated with end pair, A-tailing, adapter ligation, and eight
cycles of PCR. The prepared lllumina libraries were quantified using KAPA Biosystem’s next-generation
sequencing library qPCR kit and run on a Roche LightCycler 480 real-time PCR instrument. The quantified
libraries were then multiplexed with other libraries, and the pool of libraries was then prepared for
sequencing on the lllumina HiSeq 2500 sequencing platform utilizing a TruSeq paired-end cluster kit, v4,
and lllumina’s cBot instrument to generate a clustered flow cell for sequencing. Sequencing of the flow
cell was performed on the lllumina HiSeq2500 sequencer using a TruSeq SBS sequencing kit, v4,
following a 2 X 100 indexed run recipe.

Transcriptome raw fastq file reads were evaluated for artifact sequence using BBDuk (https://
sourceforge.net/projects/bbmap/), raw reads by kmer matching (kmer = 25), allowing 1 mismatch and
detected artifact was trimmed from the 3’ ends of the reads. RNA spike-in reads, PhiX reads, and reads
containing any Ns were removed. Quality trimming was performed using the phred trimming method set
at Q6. Finally, following trimming, reads under the length threshold were removed (minimum length 25
bases or 1/3 of the original read length, whichever is longer). Filtered fastq files were used as input for
de novo assembly of RNA contigs. Reads were assembled into consensus sequences using Trinity (ver.
2.1.1) (74) with the —normalize_reads (In-silico normalization routine) and -jaccard_clip (Minimizing
fusion transcripts derived from gene dense genomes) options. The assembled transcriptome was used
for genome annotation and made available through the JGI fungal genome portal MycoCosm (http://
genome.jgi.doe.gov/Yarlip1/Yarlip1.home.html).

Genome resequencing and identification of mutations. Genomic DNA was prepared from wild-
type and mutant strains using a yeast genomic DNA purification kit (AMRESCO, Solon, OH) followed by
150-bp paired-end sequencing on an lllumina MiSeq instrument or 100-bp paired-end sequencing on an
lllumina HiSeq instrument (San Diego, CA). The paired-end reads were aligned to the Y. lipolytica FKP355
reference genome sequence available at the website http://genome.jgi.doe.gov/Yarlip1/Yarlip1.home
.html using BWA (75) or Bowtie2 (76) and visualized with the Integrated Genomics Viewer (77). Mutations
were identified and annotated with Samtools (78), Pindel (79), BreakDancer (80), CNVnator (81), SnpEff
(82), and custom Perl scripts.

Overexpression plasmid construction. Overexpression plasmids were constructed using pYL15 as
a vector (55). Coding sequences from YLmsn2, YImbp1, and YIswi6é were PCR amplified using primer pairs
OEB491/492, OEB497/498, and OEB503/504, respectively, from Y. lipolytica FKP355 genomic DNA using
Q5 DNA polymerase (New England Biolabs, Ipswich, MA) (Table 5). Plasmid pYL15 was digested with Smal
and Fast AP (Fermentas, Waltham, MA) to dephosphorylate plasmid ends. The PCR products were
purified using a GenelET purification kit (Thermo Fisher Scientific, Waltham, MA) and assembled using
the NEBuilder HiFi assembly kit (New England Biolabs, Ipswich, MA) according to the manufacturer’s
instructions to produce autonomously replicating overexpression plasmids for msn2, mbp1, and swi6.
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TABLE 5 Primers used in this study

Primer Sequence (5—3')

OKP443 ACCCGTTGCTATCTCCACAC

OKP444 GTGCAGTCGCCAGCTTAAA

OEB491 ATATCTACAGCGGTACCCCCATGGACCTCGAATTGGAAAT
OEB492 CCGCCTCCGCCGATATCCCCCTAGTCCCGAGGATGCGTA
OEB497 ATATCTACAGCGGTACCCCCATGTCCATCTACAAAGCAAC
OEB498 CCGCCTCCGCCGATATCCCCCTATCTCTCTCCCTCAAGCA
OEB503 ATATCTACAGCGGTACCCCCATGCCCGACGTGAAACACGA
OEB504 CCGCCTCCGCCGATATCCCCTCATGCCTGCTGAGGAGGCT
OEB544 CTGATCGTACCTTGATGTCGACCCGTTGCTATCTCCACAC
OEB545 CGTACAGTTCGAGGATCGTAGTGCAGTCGCCAGCTTTAAA
OEB487 GGTTTTGAGTCTTGGGAGTGG

OEB548 CGACATCAAGGTACGATCAGATGGGCCAAAGTTAGTGGTG
OEB549 TACGATCCTCGAACTGTACGCCTTCTAGTCTCCGCTCCAT
OEB490 CCACAGCTGCTCTTATGACG

OEB493 GTAGTTTCGGTTGCCTCGTC

OEB550 CGACATCAAGGTACGATCAGTCGAGTTACCCTATGTGCTG
OEB551 TACGATCCTCGAACTGTACGGGGTCGGTCTAGGACGATGT
OEB496 GACACAAAGCTCATCGGTGG

OEB499 TGCAATCTCCTCCCAGATTT

OEB552 CGACATCAAGGTACGATCAGTGTCGTGAACGTCTTTGAGC
OEB553 TACGATCCTCGAACTGTACGCTCACGGTATGGGCTGTTCT
OEB502 TCTCCGAGGCCATCATTTAG

OEB846 TTGATCCTGATGGTCGTGAA

OEB847 CGACATCAAGGTACGATCAGATCAGCGGAGATGTTTCGTC
OEB848 TACGATCCTCGAACTGTACGGAATAAACCGTCAGCCCAGA
OEB849 GGCGACACAGTCAGAGCATA

OEB4 CGGAGATGATATCGCCAAAC

OEB575 GAGCTGCCATTGAGAAGGAG

Yeast strain construction. Transformations were performed by the lithium acetate method (83), and
transformants were selected on YNB agar. PCR products were amplified using Q5 DNA polymerase (New
England Biolabs, Ipswich, MA) and custom primers (Table 5). DNA fragments were purified using a GeneJET
purification kit (Thermo Fisher Scientific, Waltham, MA). leu2-270 was complemented in FKP503 (smooth-33)
by transformation with full-length leu2 after PCR amplification using primer pair OKP443/444 to construct
strain FKP514. Integration at the leu2-270 locus was confirmed by PCR. YImsn2, YImbp1, Ylswi6, and Ylchk1
were replaced with a leu2* nutritional marker. Briefly, 1-kb regions flanking each gene were amplified from
FKP355 genomic DNA using Q5 DNA polymerase and primers designed with overhangs homologous to the
leu2 gene (amplified with primers OEB544/545) from Y. lipolytica genomic DNA (primer pairs OEB487/548,
OEB549/490, OEB493/550, OEB551/496, OEB499/552, OEB553/502, OEB846/847, and OEB848/849). The frag-
ments were purified using a GeneJET purification kit (Thermo Fisher Scientific, Waltham, MA) and assembled
into full-length deletion cassettes with leu2 using NEBuilder HiFi assembly kit or as split marker deletion
cassettes with internal leu2 primers OEB4 and OEB575. Deletion cassettes were transformed into strain FKP355
or FKP503 as appropriate. Replacement of genes with leu2* was confirmed by PCR. Deletion and overex-
pression strains were characterized on YNB agar at 28°C.

Transcriptome analysis. Samples for transcriptome analysis were collected from steady-state che-
mostats, frozen in liquid nitrogen, and stored at —80°C. Total RNA was extracted with TRIzol (Invitrogen,
Carlsbad, CA, USA) following the manufacturer’s instructions with additional mechanical disruption of the
cells using a FastPrep homogenizer (MP Biomedicals, Santa Ana, CA, USA) and 1-mm silica beads. Further
RNA preparation and RNA sequencing were performed by ScilifeLab in Uppsala, Sweden, using their
lonTorrent platform. Raw RNA-seq reads were aligned to the Y. lipolytica genome using Bowtie (76), and
counts were obtained with HTSeq (84) and transformed using voom (85). The top 1,000 genes with the
greatest positive and negative fold change values from the FKP514 versus FKP391 transcriptome
comparison were analyzed for enrichment of Gene Ontology terms using FunRich (86). The 500-bp
promoter region of the top 1,000 genes with the greatest positive and negative fold change values from
the FKP514 versus FKP391 transcriptome comparison were analyzed for enrichment of specific sequence
motifs using DREME (87). Identified motifs were compared to the Jaspar core fungal motifs database (31)
using Tomtom (88) to identify candidate regulators.

Microscopy. For confocal microscopy, live cells were collected and immediately visualized using a
Zeiss LSM710 confocal laser-scanning microscope (Carl Zeiss Microlmaging GmbH, Munchen, Germany)
with a Plan-Apochromate 100X/1.4 oil objective. All images were processed using ImageJ (89). For
colony morphology, cells were imaged on a VWR Stereo Zoom Trinocular microscope fitted with a Canon
EOS 6D DSLR camera, and images were processed with Adobe Photoshop.

Data availability. Sequence data from the whole-genome shotgun project for Y. lipolytica FKP355
have been deposited at DDBJ/ENA/GenBank under accession number PKSB00000000. The version of
sequence data described in this paper has accession number PKSB01000000. Sequence data for the Y.
lipolytica smooth strains (FKP355 and FKP500 to FKP504) have been deposited at NCBI SRA under
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accession number PRINA499126. Sequence data for the Y. lipolytica hyphal reversion strains (FKP514 to
FKP730) have been deposited at NCBI SRA under accession numbers SRP145806, SRP145808, SRP145807,
SRP145813, SRP145810, SRP145811, SRP145814, SRP145809, SRP145815, SRP145817, SRP145820,
SRP145818, SRP145816, SRP145821, SRP145825, SRP145822, SRP145824, SRP145826, SRP145835,

SRP145830, SRP145834, SRP145828, SRP145836, SRP145832, SRP145831,

SRP145829, SRP145833,

SRP145837, and SRP145838. Transcriptome data have been deposited at ArrayExpress under accession
number E-MTAB-7400.
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