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SUMMARY

Access to high quality antibodies is a necessity for the study of histones and their posttranslational 

modifications (PTMs). Here we debut The Histone Antibody Specificity Database (http://

www.histoneantibodies.com), an online and expanding resource cataloguing the behavior of 

widely used commercially available histone antibodies by peptide microarray. This interactive 

web portal provides a critical resource to the biological research community who routinely use 

these antibodies as detection reagents for a wide range of applications.
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INTRODUCTION

Histones and their numerous posttranslational modifications (PTMs) are fundamental to the 

process of cell fate decision-making and organismal development. Consistent with this, 

studies have shown that both histone mutation and PTM misregulation contribute to the 

initiation and progression of a wide number of human diseases, including cancer and 

neurological disorders (Bannister and Kouzarides, 2011; Dawson and Kouzarides, 2012; 

Funato et al., 2014; Jakovcevski and Akbarian, 2012; Lewis et al., 2013; Rothbart and 

Strahl, 2014). Histone modifications function in part as docking sites for effector proteins 

harboring specialized, evolutionarily conserved domains that ‘read’ the single or 

combinatorial modification states of histones (Gardner et al., 2011; Jenuwein and Allis, 

2001; Strahl and Allis, 2000).

The mass production and distribution of PTM-specific histone antibodies (more than 1,000 

are commercially available to date) has greatly facilitated the study of these histone marks 

and their impact on chromatin function (Perez-Burgos et al., 2004; Turner and Fellows, 

1989). Histone PTM antibodies are essential for numerous applications in chromatin 

research, including immunoblotting, immunostaining, and chromatin immunoprecipitation 

(ChIP). Indeed, large-scale epigenomics ‘roadmap’ efforts like the Encyclopedia of DNA 

Elements (ENCODE) projects depend on these antibodies for genome-wide mapping of 

histone PTM distribution (Ernst et al., 2011; Gerstein et al., 2010; Kharchenko et al., 2011). 

However, recent studies have made some surprising and alarming observations regarding the 

behavior of histone PTM antibodies, including off-target recognition, strong influence by 

neighboring PTMs, and an inability to distinguish the modification state on a particular 

residue (e.g., mono-, di-, or tri-methyl lysine) (Bock et al., 2011; Egelhofer et al., 2011; 

Fuchs et al., 2011; Fuchs and Strahl, 2011; Hattori et al., 2013; Nishikori et al., 2012; 

Rothbart et al., 2012e). Consequently, poor antibody choice can lead to misinformed 

conclusions regarding the location and function of the histone PTM being queried (Baker, 

2015). As our understanding of how histone PTMs contribute to normal biology and human 

disease depends on the quality of the antibodies being used, continued rigorous quality 

control is needed for accurate data interpretation and continued progress in the field.

Herein, we describe an interactive web resource, The Histone Antibody Specificity 

Database, for histone PTM antibody characterization built on our recently developed high-

density histone peptide microarray platform (Fuchs et al., 2011; Rothbart et al., 2012b). This 

open-access database, which at the time of publication provides characterization data on 

over 100 of the most frequently used and cited commercially available histone PTM 

antibodies, serves as an interactive, sustained and evolving platform for the interrogation of 

antibody specificity that will greatly aid epigenetics researchers in making more informed 

histone antibody choices. We provide several vignettes of common antibody behavior drawn 

from this resource, including off-target recognition and sensitivity to neighboring PTMs, and 

we highlight how these behaviors could influence the conclusions made from their use in 

various applications.
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RESULTS

The Histone Antibody Specificity Database

We recently developed a high-density histone peptide microarray platform consisting of a 

library of over 250 purified biotinylated histone peptides harboring PTMs (lysine 

acetylation, lysine/arginine methylation, and serine/threonine phosphorylation) alone and in 

relevant combinations that are largely derived from mass spectrometry-based proteomics 

datasets (Table S1) (Pesavento et al., 2008; Sidoli et al., 2012; Young et al., 2009; Young et 

al., 2010). This platform allows for robust and comprehensive characterization of the 

behavior of histone-interacting proteins, including the specificity of histone antibodies 

(Figure 1A) (Cai et al., 2013; Fuchs et al., 2011; Rothbart et al., 2013; Rothbart et al., 2012a; 

Rothbart et al., 2012e). Notably, antibody reactivity with differing modification states (e.g., 

mono-, di- and trimethyl lysine) and the influence of epitope recognition by neighboring 

histone PTMs can be determined with high precision. With this platform, we analyzed over 

100 histone PTM antibodies that are commercially available from nine suppliers who market 

these products to specifically recognize various methylated, acetylated, and phosphorylated 

residues (and their combinations) on the core and variant histones, yielding over 25,000 

specific binding measurements (Figure 1B and Table S2).

To create a versatile platform that is easily accessible to the broad scientific community for 

interrogation of histone antibody specificity data, we built an interactive web platform, 

www.histoneantibodies.com (Figure 1C), which utilizes the D3js JavaScript library. Users 

can query the database by search bar (Figure 1C; top) or by histone and sequence context 

(Figure 1C; bottom) for antibody data specified by PTM of interest, histone, residue, 

company, or product number (Table S2). All datasets for a particular PTM of interest are 

presented together to allow users to make direct comparisons. Data are presented on the 

website as interactive heat maps (Figures S1A and S1B) and bar graphs (Figure S1B). 

Hovering over individual data points in these graphs gives the user information on 

corresponding peptide length, PTMs, and sequence context (Table S1). For heat maps, array 

signal intensities are ordered from strongest (yellow) to weakest (blue) relative to a 

reference target (black) – the peptide harboring the PTM(s) on the antibody product label. 

All peptides containing the reference target are outlined in red.

For bar graphs, array results are presented as normalized mean intensities ± S.E.M. on a 

scale from 0 (undetectable binding) to 1 (strong binding). The target peptide is depicted as a 

green bar. Orange bars indicate target-containing peptides that display enhanced signal 

compared to the reference. These are PTM combinations that enhance antibody binding. 

Light blue bars indicate target-containing peptides that display a diminished signal 

compared to the reference. These are PTM combinations that inhibit antibody binding. Gray 

bars indicate off-target peptides. Analysis of all tested histone PTM antibodies allowed us to 

bin unfavorable behavior into three general categories: 1) an inability to distinguish states of 

methylated lysine, 2) sensitivity to neighboring PTMs, and 3) recognition of off-target 

modifications. Examples of these types of behavior are discussed below.
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Distinguishing States of Methylated Lysine

Of the 38 di- and tri-methyllsyine antibodies screened, 16 cross-react with lower states of 

lysine methylation on a target residue, and one recognized a higher state of lysine 

methylation. Notably, this does not appear to be a general property of methyllysine 

antibodies to a particular target residue. For example, analysis of five H3K4me3 antibodies 

shows that several cross-react with H3K4me2 peptides, while others are selective for the 

H3K4me3 mark (Figure 2A, left). This is also true for H3K4me2 antibodies, some of which 

cross-react with H3K4me1 peptides (Figure 2A, right). Importantly, the three states of 

methylation at H3K4 have reportedly differential regulatory functions (Barski et al., 2007), 

yet analysis of the genomic distribution of these marks by ChIP-Seq in HEPG2 cells, using 

antibodies that cross react with lower order methylation states by microarray, shows 

overlapping signal for H3K4me3 and H3K4me2 across transcription start sites and gene 

bodies (Figure S2A), and for H3K4me2 and H3K4me1 across enhancer elements (Figure 

S2B). Collectively, these results highlight the importance of antibody choice for accurately 

discerning between various states of lysine methylation and suggest antibody cross-

reactivity may contribute to inaccurate mapping of histone lysine methylation states in 

genome-wide analyses due to antibody cross-reactivity.

Sensitivity to neighboring PTMs

Neighboring PTMs can impact not only the ability of a reader domain to bind its target 

modification but also the ability of histone PTM antibodies to recognize their target epitopes 

(Bock et al., 2011; Fuchs et al., 2011). As an example, H3K9me3 antibodies show varying 

degrees of sensitivity – both enhanced and perturbed epitope recognition – to neighboring 

PTMs that surround H3K9 (Figure S2C). Most notably, H3K9me3 antibodies we screened 

show differential tolerance to neighboring H3S10 phosphorylation (Figure 2B; left) – a 

mitotic combinatorial ‘methyl/phospho switch’ known to eject proteins like heterochromatin 

protein 1 (HP1), for example, from mitotic chromatin (Fischle et al., 2005; Hirota et al., 

2005). Neighboring H3K9me3 also impacts epitope recognition by H3S10p antibodies 

(Figure 2B; middle). The H3K9me3 and H3S10p antibodies insensitive to this ‘methyl/

phospho switch’ cannot distinguish between dually marked H3 tails and isolated H3K9me3 

or H3S10p marks. However, several antibodies developed to recognize this methyl/phospho 

PTM combination are capable of this distinction by microarray analysis (Figure 2B; right). 
Collectively, these findings suggests that H3K9me3 and H3S10p antibodies sensitive to 

neighboring phosphorylated and methylated residues, respectively, under-represent these 

singly-marked histone H3 populations in mitosis, and that combinations of all three selective 

reagents may be required to accurately detect and map this dually marked chromatin 

signature.

Consistent with our previous observations (Rothbart et al., 2012e), microarray analysis 

shows that site-specific H4 acetyl antibodies preferentially bind epitopes with iterative 

increases in acetylation content (Figure 2C). For example, all of the H4K5ac antibodies 

screened show enhanced signal on peptides containing H4K5ac and one or more H4Kac 

sites, with iterative increases in acetylation content (up to 4 sites on a single peptide) being 

preferred epitopes for the majority of H4 acetyl antibodies screened. Importantly, this does 

not appear to be due to charge masking, as an H4K12ac peptide with all other lysines 
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mutated to glutamine (K5, K8, K16, and K20) is only recognized by H4K12ac antibodies 

and by a tetra-acetyl H4 antibody (4ac) that also recognizes H4K12ac peptides in isolation 

(Figure 2C).

Off-target PTM recognition

A significant number of histone PTM antibodies that were screened demonstrated cross-

reactivity with unintended modifications. For example, while H3K9me3 Ab2 is insensitive 

to neighboring H3S10p (Figure 2B; left) and does not recognize lower-order methylation 

states of H3K9 (Figure 2D), this antibody suffers from off-target recognition of other tri-

methylated lysine residues, including H3K27me3, H3K23me3, and H3K18me3 (Figures 2D 

and S3). While the latter two PTMs are found in lower abundance in cells (Lin et al., 2014) 

and may therefore not be problematic under physiologic conditions, cross-reactivity with 

H3K27me3 may be problematic for this antibody, enriching for signals present in regions of 

facultative heterochromatin where H3K9me3 may or may not reside.

H3K9 and H3K27 are both found in an ARKS motif, and indeed, we and others have shown 

that the H3K9 methyltransferase G9a can modify H3K27 in vitro ((Tachibana et al., 2001) 

and not shown). While this may serve as an explanation for antibody mis-targeting between 

these sites, we note that this issue of off-target methyllysine reactivity does not appear to be 

restricted to residues found in similar sequence contexts. Indeed, analysis of H3K27me3 

antibodies shows that several preferentially bind H3K4me3 peptides (Figure 3A). This off-

target recognition is strongly enhanced when H3K4me3 is presented in combination with 

neighboring acetylation marks, a native context of H3K4me3 found in cells (Taverna et al., 

2007). To test whether this cross-reactivity could be seen in cells, we performed 

immunoblots with this antibody on whole-cell extracts from the budding yeast 

Saccharomyces cerevisiae, an organism whose chromatin lacks H3K27 methylation (Garcia 

et al., 2007). To our surprise, a 17kDa band corresponding to signal from histone H3 was 

detected with H3K27me3 Ab3 (Figure 3B; left). Furthermore, this 17kDa band was 

undetectable following deletion of SET1, the sole H3K4 methyltransferase in budding yeast 

(Briggs et al., 2002) (Figure 3B; right), demonstrating cellular cross-reactivity of this 

H3K27me3 antibody with H3K4me3-marked histones in cells and presenting a potential 

conundrum for bivalency readouts (Bernstein et al., 2006) featuring these antibodies.

Another type of antibody cross-reactivity we observed was epitope recognition in the 

absence of a target PTM. This can be seen with several analyzed H3S10p antibodies that 

recognize H3(1-20) peptides combinatorially modified in various ways in the presence 

(Figure 3C; top) or absence (Figure 3C; bottom) of this phosphorylation mark. H3S10p is a 

dynamic histone PTM found in low abundance at transcriptionally active genes in interphase 

cells (Davie, 2003) and is highly enriched in mitotic chromatin during condensation (Wei et 

al., 1999). To confirm the behavior observed with H3S10p antibodies, we tracked the cell 

cycle dynamics of this PTM using an H3S10p antibody the arrays would classify as specific 

for this mark (Ab1) and one the arrays would classify as a pan N-terminal H3 antibody 

(Ab2). HeLa cell were arrested at G1/S by double thymidine block and extracts were 

immunoblotted at time points following release to track H3S10p through mitosis (Figure 

3D). Consistent with previous observations (Davie, 2003; Wei et al., 1999), H3S10p Ab1 
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signal was weak through S phase and was pronounced in mitotic extracts (Figure 3D). In 

contrast, H3S10p Ab2 signal was equal in all cell cycle fractions, consistent with 

characterization by array of this antibody’s behavior as an N-terminal specific, pan H3 

antibody.

ChIP validation of antibody behavior

A gold standard for histone PTM antibodies is their utility in chromatin 

immunoprecipitation (ChIP) assays. We therefore questioned whether characterization of 

antibodies by peptide microarray could inform on target recognition in ChIP. We chose two 

H3K27me3 antibodies that displayed acceptable behavior by peptide microarray to test in 

ChIP-Seq. Analysis of wild-type mouse embryonic stem cells showed a strong correlation of 

read distribution between the two antibodies (Figures 4A, 4B, and S4A). To assess the 

specificity of these antibodies for H3K27 methylation, parallel ChIP-Seq experiments were 

performed in ES cells lacking H3K27 methylation due to genetic deletion of the EED core 

subunit of the PRC2 histone methyltransferase complex (Chamberlain et al., 2008) (Figures 

4A, 4B, S4B, and S4C). Meta-analysis of the average signal for each antibody over all 

H3K27 peaks in the genome (n = ~ 8,500) shows that these antibodies are specific and that 

signal is lost in the knockout line (Figure 4B).

While ChIP experiments comparing wild type and histone methyltransferase-null cell lines 

inform on antibody specificity, they can only provide correlative information on epitope 

recognition. We therefore sought to define more directly the specificity of histone PTM 

antibodies for endogenous nucleosomal epitopes by performing IPs of mouse ES cells (E14) 

spiked with a library of semi-synthetic DNA-barcoded mononucleosomes (Internal Standard 

Calibrated ChIP; IceChIP) uniformly modified by H3K4me3, H3K9me3, H3K27me3, 

H3K36me3, and H3K79me2 (Grzybowski et al., 2015). We tested two H3K27me3 

antibodies and two H3K79me2 antibodies using both native and cross-linking IP conditions 

(Figures 4C and 4D). The series of semi-synthetic nucleosomes marked with H3K27me3 

were significantly enriched with both H3K27me3 antibodies under both native IP and cross-

linking conditions. In contrast, H3K79me2 Ab1, but not Ab2, modestly enriched for semi-

synthetic nucleosomes marked with this PTM under native conditions, and neither antibody 

enriched for H3K79me2 nucleosomes under cross-linking conditions. Collectively, these 

data highlight the utility of semi-synthetic nucleosomes for histone PTM antibody 

characterization within ChIP experiments and suggest that the choice to cross-link chromatin 

in a ChIP can have consequences on the resultant IP.

DISCUSSION

Antibody choice is the single most important element of many epigenetic experiments; yet 

there are many widely used commercial preparations available for a given mark, and they do 

not all perform equivalently. In this report, we unveil a database that documents the 

behavior of over 100 histone PTM-specific antibodies on peptide microarrays. This portal 

provides an interactive search tool, allowing investigators to access and compare antibodies 

based on histone type, PTM type, vendor source and other criteria. Importantly, the database 

is built to evolve and grow over time as additional antibodies are characterized. To facilitate 
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community involvement, inclusion of new antibody data can be achieved through 

investigator-supplied or vendor-supplied microarray results using the Upload Data tab in the 

main page portal. A simple user guide walks investigators through the few steps required to 

integrate array results on the webpage. Briefly, after an array is scanned, a three-column 

comma separated value (CSV) file is uploaded that contains a pixel index or spot ID 

number, green signal intensity and red signal intensity. A sample formatted data file is 

available for viewing and downloading on the site. The database and web portal are built 

automatically via Bash script, allowing newly acquired results to be rapidly analyzed and 

added to the site through a curator with minimal effort. As the need for precise 

characterization of an antibody’s target epitope grows, the use of the array platform utilized 

in this report, which is commercially available through multiple vendors including 

EpiCypher and Millipore, will make this possible. Significantly, this database will 

organically grow with minimal support needed, and further, can adapt to changing array 

platforms.

Using the information obtained from the Histone Antibody Specificity Database, we 

highlight several vignettes describing the type of antibody behaviors that are seen with 

antibodies raised against methyllysine, acetyllysine and phosphoserine on histone residues. 

Antibodies examined displayed a variety of results, ranging from very specific target 

recognition to difficulties in recognizing a precise methyl state, acetyl site location and the 

specific target site itself. The antibodies exhibiting these issues could have severe 

consequences in data interpretation, which may depend on the abundance of the on-target 

mark relative to the off-target PTM. Antibody misbehavior may also be application specific 

(e.g., immunoblotting vs. ChIP). Our array findings revealed the capacity of some of these 

antibodies to show the same behavior in various applications, for example western bot 

(Figure 3A) and ChIP (Figure 4). Thus, the results available in the database offer an 

important view of each antibody and what the total possibilities are.

While another available database of antibody specificity is available (Egelhofer et al., 2011), 

this Antibody Validation Database (AVD) specifically offers the demonstration of an 

antibody’s ability to work or not in western or ChIP (e.g., seeing a band in extracts or 

sequencing reads), but does not report on the actual specificities of each antibody for all 

possible target possibilities. We argue that knowing the PTM ‘interactome’ represents the 

fundamental foundation that investigators need to start with when choosing an antibody for 

their studies. Thus, the Histone Antibody Specificity Database is meant to complement the 

AVD, but not replace it. To connect these two databases, we have created hyperlinks to 

query available AVD data for a PTM of interest. These links are accessible by mousing over 

the antibody name on the heat maps (Figure S1B). In addition, users can also query available 

ENCODE data, lot information and link directly to the product page for a given antibody 

from the same window.

It is important to highlight that results from the Histone Antibody Specificity Database may 

not translate to actual results in other applications. As mentioned above, while an antibody 

may show ability to bind with an off-target PTM, it may not be an issue if that off-target 

PTM is not present in a particular cell type, or far less abundant in bulk histones (Lin et al., 

2014). Therefore, careful integration of our microarray data with available mass 
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spectrometry-based proteomics analysis of histone PTMs will allow investigators to predict 

whether off-target antibody behavior may be problematic in their specific application. 

However, there are likely cases where off-target recognition or failure to recognize the 

appropriate methyl or acetyl state can skew results, as shown in Figures 2D, 3C, 3D, 4C, and 

4D. Histone core modifications like H3K79 methylation exemplify this concept. Our 

analysis of H3K79 methyl antibodies shows specificity on peptide arrays (as might be 

expected given the antibodies are raised against peptide antigens), but failure in applications 

where the modification must be recognized in its physiologic state. Since the peptide epitope 

does not represent the nucleosomal context of the mark, these antibodies fail to recognize 

the PTM in non-denaturing conditions (they work in denaturing assays like 

immunoblotting). Thus, as a first pass of selecting the right reagent, array analysis provides 

a high-throughput measure of the scope of on/off target binding. But as the arrays are dense 

surfaces of peptide epitopes, and the antibody is dilute and mono-dispersed, which is an 

excellent surrogate for immunoblotting and for exposed epitopes, the arrays may not 

represent assays like ChIP in that the format is reversed (dense surface of antibody, sparse 

epitope), and the nucleosomes must remain largely intact and folded.

The Histone Antibody Specificity Database represents an invaluable resource and tool for 

the scientific community who rely on histone PTM antibodies as detection reagents in 

chromatin and epigenetics research. Collectively, the data from this web portal will now 

greatly aid in informing investigators about specificity of antibodies they have previously 

used, and the website will enable better decision-making for which reagent to use in future 

experiments among the myriad of commercially available antibodies. It is our hope that 

making this specificity data publicly available will facilitate more informed antibody 

choices, aiding in the interpretation of results obtained with these critical reagents.

EXPERIMENTAL PROCEDURES

Materials

Biotinylated histone peptides (Table S1) were synthesized by Fmoc chemistry, purified by 

reverse phase HPLC and analyzed by MALDI-TOF MS and analytical reverse phase HPLC 

as previously described (Rothbart et al., 2012b). A list of antibodies screened in this study 

can be found in Table S2.

Histone Peptide Microarrays

Array fabrication, antibody detection and data analysis were performed as described 

(Rothbart et al., 2012b) with the following modifications. Each peptide listed in Table S1 

was spotted in triplicate eight times per array. Triplicate spots were averaged and treated as 

a single value for subsequent statistical analysis. Heat maps were generated with Java 

TreeView (Saldanha, 2004).

Cell Culture, Manipulation, and Protein Harvest

HeLa cells (ATCC) were cultured in MEM (Life Technologies) supplemented with 10% 

FBS, maintained in a 37 °C incubator with 5% CO2 and pas saged every 2-3 days. EED-null 

(referred to as KO) embryonic stem cells (Gift from Weipeng Mu and Della Yee) were 
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generated from EED fl/fl (referred to as WT) mouse ES cells transfected with a CAG-Cre-

ERT2 transgene and treated with tamoxifen. Cells were cultured as previously described 

(Chamberlain et al., 2008). For double-thymidine block, HeLa cells were synchronized by 

treatment with 2 mM thymidine (Sigma) for 16 hours, followed by release for 8 hours and 

retreatment with 2 mM thymidine for 16 hours. HeLa cells were lysed in cold buffer 

containing 10 mM PIPES (pH 7.0), 300 mM sucrose, 100 mM NaCl, 3 mM MgCl2, 1× 

EDTA-free protease inhibitor (Roche), 1× phosphatase inhibitor cocktail (Sigma), 0.1% 

Triton X-100 and endonuclease (Pierce) before being resolved by SDS-PAGE. Whole cell 

protein extracts from wild-type (BY4741) and set1Δ Saccharomyces cerevisiae were 

prepared using SUMEB buffer containing 10 mM MOPS (pH 6.8), 1% SDS, 8 M urea, 10 

mM EDTA and 0.01% bromophenol blue. Briefly, 500 ml of buffer and the equivalent 

volume of glass beads were added to approximately 36 O.D. equivalent of cells. Extracts 

were prepared by beating the beads for 6 minutes followed by centrifugation. Cleared 

extracts were serially diluted 2-fold using SUMEB buffer and boiled for 10 minutes at 95°C 

prior to SDS-PAGE and immunoblotting with the indicated antibodies.

ChIP

Wild-type and EED-null ES cells were harvested and fixed for 10 minutes at room 

temperature in 1% formaldehyde in phosphate buffered saline (PBS) and then quenched by 

adding glycine to 0.125 M for 5 minutes at room temperature. 50 μL Protein A and Protein 

G Dynal beads (Life Technologies) were prepared by incubating with 5 μg H3K27me3 

(Abcam ab6002) or 5 μg H3K27me3 (Millipore 07-449) overnight. Cells were sonicated for 

10 cycles of 30 seconds on 1 minutes off using a Bioruptor (Diagenode) to an average size 

or 200-600 bp and incubated overnight with antibody bead complexes. The beads were 

washed 8 times in RIPA buffer (10 mM Tris-HCl ph 8.0, 100 mM NaCl, 1 mM EDTA, 0.5 

mM EGTA, 0.1% Sodium Deoxycholate, 0.5% N-lauroylsarcosine) and eluted in 100 μL of 

1% SDS, 100 mM NaHCO3 for 15 minutes at 65 degrees. Following crosslink reversal 

samples were treated with RNAseA and Proteinase K before purification using a Clean and 

Concentrator ChIP kit (Zymo Research).

Library Preparation

Libraries were prepared using standard methods for Illumina sequencing using NEB Next 

ChIP kits (New England Biolabs) and samples were submitted to the UNC High-Throughput 

Sequencing Facility for sequencing on an Illumina HiSeq2000.

Bioinformatics Analysis

Reads were aligned to the mouse genome (mm10) with bowtie2 using the -sensitive 

parameter (Langmead and Salzberg, 2012) and enriched regions were identified using macs2 

v2.1.0 (Zhang et al., 2008) using the broadpeak setting. Genome browser tracks were 

created using the HTSeq python library (Anders et al., 2015) and are available for use as a 

UCSC Genome Browser track hub (GEO accession #GSE66902) at http://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=cvmbiscshnclfud&acc=GSE66902. 

Comparisons of WT and KO cell lines for each antibody were carried out using R (R Core 

Team (2014)).
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Bar-Coded Designer Nucleosomes Construction

Barcoded semi-synthetic nucleosomes were made as previously described (Grzybowski et 

al., 2015). Posttranslational modifications of histone H3 included: H3K4me3, H3K9me3, 

H3K27me3, H3K36me3, H3K79me2, and unmodified histone H3 (WT).

ICeCHIP

Native ICeChIP was performed with chromatin isolated from mouse ESCs (E14) as 

previously described (Brand et al., 2008). Aforementioned chromatin was doped with semi-

synthetic nucleosomes bearing symmetrical: H3K4me3, H3K9me3, H3K27me3, 

H3K36me3, H3K79me2 as well as non-modified H3; each mark was identifiable by a 

unique DNA sequence. For crosslinked ICeChIP, the same source and amount of digested 

and HAP purified chromatin was subjected to a 15 minute treatment with 0.1% freshly 

cracked formaldehyde at room temperature. Crosslinking was extinguished with 1 volume of 

2× X-link ChIP buffer (66 mM Tris pH 7.5, 300 mM NaCl, 10 mM EDTA, 2% NP-40, 0.5% 

N-lauroylsarcosine). The concentration of chromatin was adjusted to 20 μg/mL with 

appropriate ChIP buffer supplemented with 50 μg/mL BSA (NEB). 16 μL of protein A 

magnetic beads per IP (Dynabeads®) was washed twice with IP buffer 1 (25 mM Tris pH 

7.5, 5 mM MgCl2, 100 mM KCl, 10% (v/v) glycerol, 0.1% (v/v) NP-40 substitute, 50 μg/mL 

BSA (NEB)) and subsequently incubated with 4 uL of antibody per IP (H3K27me3 AB6002 

lot GR137554; H3K27me3 AM39156 lot 29014002; H3K79me2 AM39143 lot 1008001; 

H3K79me2 M04-835 lot DAM1527889). Bead-antibody conjugates were subjected to two 

washes with ChIP buffer 1. Chromatin was incubated with antibody for 10 minutes at 4°C 

on a rotator.

For native ICeChIP, beads were washed twice for 10 minutes at 4°C with ChIP buffer 2 

(25mM Tris pH 7.5, 5 mM MgCl2, 300 mM KCl, 10% (v/v) glycerol, 0.1% (v/v) NP-40 

substitute, 50 μg/mL BSA (NEB)), and once for 10 minutes at 4°C wit h ChIP buffer 3 (10 

mM Tris pH 7.5, 250 mM LiCl, 1mM EDTA, 0.5% Na•Deoxycholate, 0.5% (v/v) NP-40 

substitute), then briefly washed with ChIP buffer 1 and TE buffer, followed by 50 μL ChIP 

elution buffer (50 mM Tris pH 7.5, 1 mM EDTA, 1% w/v SDS) at 65°C for 5 minutes.

For crosslinked ICeChIP, beads were washed three times for 10 minutes at 4°C with RIPA 

buffer (25mM HEPES pH 7.9, 250 mM LiCl, 1mM EDTA, 1% (v/v) NP-40 substitute, 0.5% 

(w/v) N-lauroylsarcosine), then briefly washed with TE buffer, followed by 50 μL ChIP 

elution buffer (50 mM Tris pH 7.5, 1 mM EDTA, 1% w/v SDS) at 65°C for 5 minutes.

Elutions were supplemented with NaCl up to 200 mM, EDTA up to 10 mM and 20 μg of 

proteinase K (Roche) and incubated for 2 hours at 55°C. To purify DNA, 3 volumes of SPRI 

beads (18% PEG8000, 1 M NaCl, 1mg/mL Sera-Mag SpeedBeads carboxylate-modified 

magnetic particles) were added to the elution and pipetted 10 times up and down followed 

by 5 minutes incubation at room temperature. Magnetic beads were collected on the side of 

the tube with a magnet, and two 30 second washes with 200 μL of 80% EtOH on the magnet 

were performed. Tubes were then taken out of magnetic rack and 50 μL of TE buffer was 

added to beads and mixed by pipetting up and down.
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Enrichment of each histone PTM was evaluated by qPCR using TaqMan® chemistry. 

Enrichment was calculated using the ΔΔCt method.

Where df is a dilution factor between IP and input. Subsequently, enrichment for each PTM 

was normalized to the enrichment of the on-target nucleosome (e.g., for H3K27me3 

antibody, on-target would be H3K27me3 semi-synthetic nucleosome). Experiments were 

performed in technical triplicate. Errors were estimated using partial derivation. All ICeChIP 

data has been deposited under GEO accession # GSE60378.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• Peptide microarrays catalogue the specificity of widely-used histone antibodies

• Histone antibodies frequently show difficulties in detecting their intended 

targets

• A Histone Antibody Specificity Database (www.histoneantibodies.com) was 

created

• This resource facilitates more informed antibody choice for epigenetic 

applications
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Figure 1. Histone antibody characterization by peptide microarray and web interface of the 
Histone Antibody Specificity Database
(A) Cartoon depicting the stepwise procedure for peptide microarraying of an antibody from 

peptide immobilization to antibody hybridization and visualization. Positive interactions are 

visualized as red fluorescence. All printed spots show green fluorescence from the 

biotinylated fluorescein (5-FAM) printing control. (B) Posttranslational modifications and 

their combinations on human histones for which antibodies screened to publication date 

(Table S2) are marketed to recognize. Lysine acetylation (ac); Lysine methylation 

(me1/2/3*); Arginine methylation (me1/2a/2s**); Serine and threonine phosphorylation (P). 

*Histone lysine methylation occurs in three forms (mono-, di-, and trimethylation). 

**Arginine methylation also occurs in three forms (monomethylation, symmetric, and 

asymmetric dimethylation). (C) Screenshot of the home page for 

www.histoneantibodies.com, an interactive java-based web resource displaying histone 

antibody specificity data from peptide microarray experiments. Users can query data by 
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entering strings in the search bar and by clicking on their histone and posttranslational 

modification of interest.
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Figure 2. Unfavorable observations of histone PTM antibody behavior
(A) The inability to distinguish the modification state on a particular residue (e.g., mono-, 

di-, or trimethyl lysine). H3K4me3 and H3K4me2 antibodies cross-react with H3K4me2 and 

H3K4me1 peptides, respectively, to varying degrees. Average signal intensities from each 

antibody screened by microarray were normalized to signal from the target peptide 

(H3K4me3, left; H3K4me2, middle; H3K4me1, right). Error is presented as ± S.E.M. from 

at least two arrays. H3K4me3 Ab1 (Millipore 07-473); H3K4me3 Ab2 (Epicypher 

13-0004); H3K4me3 Ab3 (Active Motif 39160); H3K4me3 Ab4 (Abcam ab8580); 

H3K4me3 Ab5 (Abcam ab1012); H3K4me2 Ab1 (Active Motif 39142); H3K4me2 Ab2 

(Epicypher 13-0013); H3K4me2 Ab3 (Abcam ab32356); H3K4me1 Ab1 (Abcam ab8895); 

H3K4me1 Ab2 (Millipore 07-436). (B-C) The influence of neighboring PTMs. (B; Left) 

Binding of H3K9me3 antibodies to their epitopes is inhibited to varying degrees by 

neighboring H3S10 phosphorylation (H3S10p) and vise versa. Average signal intensities 

from each antibody screened by microarray were normalized to signal from the target 

peptide. Error is presented as ± S.E.M. from at least two arrays. H3K9me3 Ab1 (Millipore 

07-442); H3K9me3 Ab2 (Diagenode C15410193); H3K9me3 Ab3 (Active Motif 39161); 

H3K9me3 Ab4 (Abcam ab8898); H3S10p Ab1 (Active Motif 39253); H3S10p Ab2 (Abcam 

ab5176); H3S10p Ab3 (Invitrogen 491041); H3S10p Ab4 (Millipore 04-817); H3K9me3 + 
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S10p Ab1 (Millipore 05-809); H3K9me3 + S10p Ab2 (Abcam ab5819). (C) H4 acetyl 

antibodies prefer poly-acetylated epitopes. Results of at least two arrays are presented as 

heat maps of normalized mean intensities on a scale from 0 (black; undetectable binding) to 

1 (yellow; strong binding). K5ac Ab1 (Active Motif 39169); K5ac Ab2 (Active Motif 

39170); K5ac Ab3 (Millipore 07-327); K8ac Ab1 (Active Motif 39172); K8ac Ab2 

(Epicypher 130021); K12ac Ab1 (Active Motif 39165); K12ac Ab2 (Millipore 04-119); 

K12ac Ab3 (Millipore 07-595); K16ac Ab1 (Active Motif 39168); 4ac Ab1 (Active Motif 

39179); 4ac Ab2 (Millipore 05-1355); Kac Ab1 (Active Motif 39925); Kac Ab2 (Millipore 

06866). (D) Off-target recognition. Scatter plot showing two arrays probed with an 

H3K9me3 antibody (Diagenode C15410193). Analysis of H3K9 methylation states shows 

strong binding to H3K9me3 peptides (blue), and minimal binding to H3K9me1 (yellow) and 

H3K9me2 (grey) peptides. This antibody also binds off-target Kme3 peptides (red). All 

other peptides are shown in black. Coefficient of determination (r2) was calculated by linear 

regression analysis using GraphPad Prism v5.
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Figure 3. Cellular validation of antibody behavior on microarrays
(A-B) H3K27me3 antibodies bind H3K4me3 peptides. (A) Results of at least two arrays are 

presented as heat maps of signal intensities relative to H3(15-34)K27me3 peptides on a scale 

from −1 (blue; undetectable binding) to +1 (yellow; strong binding). Ab1 (Abcam ab6002); 

Ab2 (Millipore 07-449); Ab3 (Active Motif 39156); Ab4 (Active Motif 39155); Ab5 

(Diagenode C1541095). (B) Immunoblots of serially diluted wild-type (BY4741) and set1Δ 

yeast cell extracts. Asterisk demarcates a cross-reactive band unrelated to H3K4me3. 

H3K27me3 Ab2 (Active Motif 39156); H3K4me3 Ab2 (Epicypher 13-0004); H3 

(Epicypher 13-0001). (C-D) H3S10p antibodies bind to the H3 N-terminal tail independent 

of S10 phosphorylation. (C) Results of at least two arrays are presented as heat maps of 

signal intensities relative to H3(1-20)S10p peptides on a scale from −1 (blue; undetectable 

binding) to +1 (yellow; strong binding). Ab1 (Active Motif 39253); Ab2 (Millipore 05-598); 

Ab3 (Abcam ab5176); Ab4 (Invitrogen 491041); Ab5 (Millipore 04-817). (D) Immunoblots 

of HeLa cell extracts at 0, 2.5, 5, 7.5 and 10 hours following release from synchronization 

by double thymidine block. H3S10p Ab1 (Active Motif 39253); H3S10p Ab2 (Millipore 

05-598).
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Figure 4. Validation of antibody behavior by chromatin immunoprecipitation
(A-B) ChIP-Seq analysis using the indicated H3K27me3 antibodies in wild-type (WT) and 

EED-null (KO) mouse embryonic stem cells. (A) Genome browser shot of the Hox cluster. 

(B) Meta-analysis of all H3K27Me3 reads 1kb on either side of transcription start sites (0) in 

WT (black) and KO (red) mESCs. Ab1 (Abcam ab6002); Ab2 (Millipore 07-449). (C-D) 

Immunoprecipitation of DNA barcoded semi-synthetic nucleosome ladders in the presence 

of isolated mouse native chromatin, under (C) native or (D) cross-linked conditions with the 

indicated antibodies. Data is presented as enrichment normalized to on-target nucleosome ± 

S.D. for three technical replicates. H3K27me3 Ab1 (Abcam ab6002); H3K27me3 Ab2 

(Active Motif 39156); H3K79me2 Ab1 (Active Motif 39143); H3K79me2 Ab2 (Millipore 

04-835).
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