35 research outputs found

    Manufacturing Large-scale Materials with Structural Color

    Get PDF
    Living organisms frequently use structural color for coloration as an alternative mechanism to chemical pigmentation. Recently there has been a growing interest to translate structural color into synthetic materials as a more durable and less hazardous alternative to conventional pigments. Efforts to fabricate structurally colored materials take place in different fronts, from 3D printing to spray-coating and roll-to-roll casting. Stability, performance, and quality of the color, the environmental impact of the materials or their manufacturing methods are some of the heavily researched topics we discuss. First, we highlight recent examples of large-scale manufacturing technologies to fabricate structurally colored objects. Second, we discuss the current challenges to be tackled to create perfect appearances which aim at the full color gamut while caring for environmental concerns. Finally, we discuss possible scenarios that could be followed in order to involve other manufacturing methods for creating structurally colored objects

    Effects of multiple scattering on angle-independent structural color in disordered colloidal materials

    Full text link
    Disordered packings of colloidal spheres show angle-independent structural color when the particles are on the scale of the wavelength of visible light. Previous work has shown that the positions of the peaks in the reflectance spectra can be predicted accurately from a single-scattering model that accounts for the effective refractive index of the material. This agreement shows that the main color peak arises from short-range correlations between particles. However, the single-scattering model does not quantitatively reproduce the observed color: the main peak in the reflectance spectrum is much broader and the reflectance at low wavelengths is much larger than predicted by the model. We use a combination of experiment and theory to understand these features. We find that one significant contribution to the breadth of the main peak is light that is scattered, totally internally reflected from the boundary of the sample, and then scattered again. The high reflectance at low wavelengths also results from multiple scattering but can be traced to the increase in the scattering cross-section of individual particles with decreasing wavelength. Both of these effects tend to reduce the saturation of the structural color, which limits the use of these materials in applications. We show that while the single-scattering model cannot reproduce the observed saturations, it can be used to design materials in which multiple scattering is suppressed and the color saturated, even in the absence of absorbing components

    Motile dislocations knead odd crystals into whorls

    Get PDF
    The competition between thermal fluctuations and potential forces governs the stability of matter in equilibrium, in particular the proliferation and annihilation of topological defects. However, driving matter out of equilibrium allows for a new class of forces that are neither attractive nor repulsive, but rather transverse. The possibility of activating transverse forces raises the question of how they affect basic principles of material self-organization and control. Here we show that transverse forces organize colloidal spinners into odd elastic crystals crisscrossed by motile dislocations. These motile topological defects organize into a polycrystal made of grains with tunable length scale and rotation rate. The self-kneading dynamics drive super-diffusive mass transport, which can be controlled over orders of magnitude by varying the spinning rate. Simulations of both a minimal model and fully resolved hydrodynamics establish the generic nature of this crystal whorl state. Using a continuum theory, we show that both odd and Hall stresses can destabilize odd elastic crystals, giving rise to a generic state of crystalline active matter. Adding rotations to a material’s constituents has far-reaching consequences for continuous control of structures and transport at all scales.The National Science Foundation (NSF) under award no. DMR-2011854. NSF DMR-1905974, NSF EFRI NewLAW 1741685 and the Packard Foundation. NSF grants DMR-1420073 (NYU-MRSEC) and DMR-2004469. ARN grant WTF and IdexLyon Tore. The National Science Foundation Graduate Research Fellowship under grant no. 1746045. D.B. The Chicago-France FACCTS programme. ‘la Caixa’ Foundation (ID 100010434), fellowship LCF/BQ/PI20/11760014 and from the European Union’s Horizon 2020 research and innovation programme under Marie SkƂodowska-Curie grant agreement no. 847648. NSF DMR-1828629 and US NSF grant no. DMR-201185

    Atom lasers: production, properties and prospects for precision inertial measurement

    Full text link
    We review experimental progress on atom lasers out-coupled from Bose-Einstein condensates, and consider the properties of such beams in the context of precision inertial sensing. The atom laser is the matter-wave analog of the optical laser. Both devices rely on Bose-enhanced scattering to produce a macroscopically populated trapped mode that is output-coupled to produce an intense beam. In both cases, the beams often display highly desirable properties such as low divergence, high spectral flux and a simple spatial mode that make them useful in practical applications, as well as the potential to perform measurements at or below the quantum projection noise limit. Both devices display similar second-order correlations that differ from thermal sources. Because of these properties, atom lasers are a promising source for application to precision inertial measurements.Comment: This is a review paper. It contains 40 pages, including references and figure

    Manufacturing Large-scale Materials with Structural Color

    No full text
    Living organisms frequently use structural color for coloration as an alternative mechanism to chemical pigmentation. Recently there has been a growing interest to translate structural color into synthetic materials as a more durable and less hazardous alternative to conventional pigments. Efforts to fabricate structurally colored materials take place on different fronts, from 3D printing to spray-coating and roll-to-roll casting. Stability, performance, and quality of the color, the environmental impact of the materials or their manufacturing methods are some of the heavily researched topics we discuss. First, we highlight recent examples of large-scale manufacturing technologies to fabricate structurally colored objects. Second, we discuss the current challenges to be tackled to create perfect appearances which aim at the full color gamut while caring for environmental concerns. Finally, we discuss possible scenarios that could be followed in order to involve other manufacturing methods for creating structurally colored objects.ISSN:0009-429

    Absence of red structural color in photonic glasses, bird feathers, and certain beetles

    No full text
    Colloidal glasses, bird feathers, and beetle scales can all show structural colors arising from short-ranged spatial correlations between scattering centers. Unlike the structural colors arising from Bragg diffraction in ordered materials like opals, the colors of these photonic glasses are independent of orientation, owing to their disordered, isotropic microstructures. However, there are few examples of photonic glasses with angle-independent red colors in nature, and colloidal glasses with particle sizes chosen to yield structural colors in the red show weak color saturation. Using scattering theory, we show that the absence of angle-independent red color can be explained by the tendency of individual particles to backscatter light more strongly in the blue. We discuss how the backscattering resonances of individual particles arise from cavity-like modes and how they interact with the structural resonances to prevent red. Finally, we use the model to develop design rules for colloidal glasses with red, angle-independent structural colors.Physic
    corecore