7 research outputs found

    Meta-analysis of global soil data identifies robust indicators for short-term changes in soil organic carbon stock following land use change

    Get PDF
    The restoration of degraded lands and minimizing the degradation of productive lands are at the forefront of many environmental land management schemes around the world. A key indicator of soil productivity is soil organic carbon (SOC), which influences the provision of most soil ecosystem services. A major challenge in direct measurement of changes in SOC stock is that it is difficult to detect within a short timeframe relevant to land managers. In this study, we sought to identify suitable early indicators of changes in SOC stock and their drivers. A meta-analytical approach was used to synthesize global data on the impacts of arable land conversion to other uses on total SOC stock, 12 different SOC fractions and three soil structural properties. The conversion of arable lands to forests and grasslands accounted for 91% of the available land use change datasets used for the meta-analysis and were mostly from Asia and Europe. Land use change from arable lands led to 50% (32-68%) mean increase in both labile (microbial biomass C and particulate organic C – POC) and passive (microaggregate, 53-250 µm diameter; and small macroaggregate, 250-2000 µm diameter) SOC fractions as well as soil structural stability. There was also 37% (24-50%) mean increase in total SOC stock in the experimental fields where the various SOC fractions were measured. Only the POC and the organic carbon stored in small macroaggregates had strong correlation with total SOC: our findings reveal these two SOC fractions were predominantly controlled by biomass input to the soil rather than climatic factors and are thus suitable candidate indicators of short-term changes in total SOC stock. Further field studies are recommended to validate the predictive power of the equations we developed in this study and the use of the SOC metrics under different land use change scenarios

    Intensive grassland management disrupts below-ground multi-trophic resource transfer in response to drought

    Get PDF
    Modification of soil food webs by land management may alter the response of ecosystem processes to climate extremes, but empirical support is limited and the mechanisms involved remain unclear. Here we quantify how grassland management modifies the transfer of recent photosynthates and soil nitrogen through plants and soil food webs during a post-drought period in a controlled field experiment, using in situ 13C and 15N pulse-labelling in intensively and extensively managed fields. We show that intensive management decrease plant carbon (C) capture and its transfer through components of food webs and soil respiration compared to extensive management. We observe a legacy effect of drought on C transfer pathways mainly in intensively managed grasslands, by increasing plant C assimilation and 13C released as soil CO2 efflux but decreasing its transfer to roots, bacteria and Collembola. Our work provides insight into the interactive effects of grassland management and drought on C transfer pathways, and highlights that capture and rapid transfer of photosynthates through multi-trophic networks are key for maintaining grassland resistance to drought

    Land management shapes drought responses of dominant soil microbial taxa across grasslands

    Get PDF
    Soil microbial communities are dominated by a relatively small number of taxa that may play outsized roles in ecosystem functioning, yet little is known about their capacities to resist and recover from climate extremes such as drought, or how environmental context mediates those responses. Here, we imposed an in situ experimental drought across 30 diverse UK grassland sites with contrasting management intensities and found that: (1) the majority of dominant bacterial (85%) and fungal (89%) taxa exhibit resistant or opportunistic drought strategies, possibly contributing to their ubiquity and dominance across sites; and (2) intensive grassland management decreases the proportion of drought-sensitive and non-resilient dominant bacteria-likely via alleviation of nutrient limitation and pH-related stress under fertilisation and liming-but has the opposite impact on dominant fungi. Our results suggest a potential mechanism by which intensive management promotes bacteria over fungi under drought with implications for soil functioning

    A global database of soil nematode abundance and functional group composition

    Get PDF
    As the most abundant animals on earth, nematodes are a dominant component of the soil community. They play critical roles in regulating biogeochemical cycles and vegetation dynamics within and across landscapes and are an indicator of soil biological activity. Here, we present a comprehensive global dataset of soil nematode abundance and functional group composition. This dataset includes 6,825 georeferenced soil samples from all continents and biomes. For geospatial mapping purposes these samples are aggregated into 1,933 unique 1-km pixels, each of which is linked to 73 global environmental covariate data layers. Altogether, this dataset can help to gain insight into the spatial distribution patterns of soil nematode abundance and community composition, and the environmental drivers shaping these patterns.Peer reviewe

    A global database of soil nematode abundance and functional group composition

    No full text
    This study uses direct measurements of soil nematode abundance from 6,825 georeferenced locations around the world, covering all continents and all terrestrial biomes. We describe the data sources, methodology and data processing steps to transform the data into a version that can be used for, for example, geospatial modeling. To do so, the samples were aggregated to the 1-km2 pixel level, each pixel is linked to 73 global covariate layers. These include on soil physiochemical properties, and vegetation, climate, and topographic, anthropogenic, and spectral reflectance information

    Soil nematode abundance and functional group composition at a global scale

    No full text
    Soil organisms are a crucial part of the terrestrial biosphere. Despite their importance for ecosystem functioning, few quantitative, spatially explicit models of the active belowground community currently exist. In particular, nematodes are the most abundant animals on Earth, filling all trophic levels in the soil food web. Here we use 6,759 georeferenced samples to generate a mechanistic understanding of the patterns of the global abundance of nematodes in the soil and the composition of their functional groups. The resulting maps show that 4.4 ± 0.64 × 1020 nematodes (with a total biomass of approximately 0.3 gigatonnes) inhabit surface soils across the world, with higher abundances in sub-Arctic regions (38% of total) than in temperate (24%) or tropical (21%) regions. Regional variations in these global trends also provide insights into local patterns of soil fertility and functioning. These high-resolution models provide the first steps towards representing soil ecological processes in global biogeochemical models and will enable the prediction of elemental cycling under current and future climate scenario
    corecore