7 research outputs found

    Cis-regulatory chromatin loops arise before TADs and gene activation, and are independent of cell fate during early Drosophila development

    Get PDF
    Acquisition of cell fate is thought to rely on the specific interaction of remote cis-regulatory modules (CRMs), for example, enhancers and target promoters. However, the precise interplay between chromatin structure and gene expression is still unclear, particularly within multicellular developing organisms. In the present study, we employ Hi-M, a single-cell spatial genomics approach, to detect CRM–promoter looping interactions within topologically associating domains (TADs) during early Drosophila development. By comparing cis-regulatory loops in alternate cell types, we show that physical proximity does not necessarily instruct transcriptional states. Moreover, multi-way analyses reveal that multiple CRMs spatially coalesce to form hubs. Loops and CRM hubs are established early during development, before the emergence of TADs. Moreover, CRM hubs are formed, in part, via the action of the pioneer transcription factor Zelda and precede transcriptional activation. Our approach provides insight into the role of CRM–promoter interactions in defining transcriptional states, as well as distinct cell types.Fil: EspĂ­nola, Sergio MartĂ­n. Centre National de la Recherche Scientifique; Francia. Institut National de la SantĂ© et de la Recherche MĂ©dicale; Francia. UniversitĂ© de Montpellier. Centre de Biologie Structurale; FranciaFil: Götz, Markus. UniversitĂ© de Montpellier. Centre de Biologie Structurale; Francia. Centre National de la Recherche Scientifique; Francia. Institut National de la SantĂ© et de la Recherche MĂ©dicale; FranciaFil: Bellec, Maelle. Centre National de la Recherche Scientifique; Francia. UniversitĂ© de Montpellier. Institut de GĂ©nĂ©tique MolĂ©culaire de Montpellier; Francia. UniversitĂ© de Montpellier. Centre de Biologie Structurale; Francia. Institut National de la SantĂ© et de la Recherche MĂ©dicale; FranciaFil: Messina, Olivier. Centre National de la Recherche Scientifique; Francia. UniversitĂ© de Montpellier. Institut de GĂ©nĂ©tique MolĂ©culaire de Montpellier; Francia. UniversitĂ© de Montpellier. Centre de Biologie Structurale; Francia. Institut National de la SantĂ© et de la Recherche MĂ©dicale; FranciaFil: Fiche, Jean Bernard. UniversitĂ© de Montpellier. Centre de Biologie Structurale; Francia. Centre National de la Recherche Scientifique; Francia. Institut National de la SantĂ© et de la Recherche MĂ©dicale; FranciaFil: Houbron, Christophe. UniversitĂ© de Montpellier. Centre de Biologie Structurale; Francia. Institut National de la SantĂ© et de la Recherche MĂ©dicale; Francia. Centre National de la Recherche Scientifique; FranciaFil: Dejean, Matthieu. Centre National de la Recherche Scientifique; Francia. UniversitĂ© de Montpellier. Institut de GĂ©nĂ©tique MolĂ©culaire de Montpellier; FranciaFil: Reim, Ingolf. Universitat Erlangen Nuremberg; AlemaniaFil: Cardozo Gizzi, Andres Mauricio. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional - Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones CardiolĂłgicas "Prof. Dr. Alberto C. Taquini". Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional; ArgentinaFil: Lagha, Mounia. Centre National de la Recherche Scientifique; Francia. UniversitĂ© de Montpellier. Institut de GĂ©nĂ©tique MolĂ©culaire de Montpellier; FranciaFil: Nollmann, Marcelo. Centre National de la Recherche Scientifique; Francia. Institut National de la SantĂ© et de la Recherche MĂ©dicale; Francia. UniversitĂ© de Montpellier. Centre de Biologie Structurale; Franci

    RĂŽle des "marques pages mitotiques" au cours de embryogenĂšse de Drosophile

    No full text
    It is during the development of the embryo that the gene expression in each cell must be controlled very precisely in space and time so that they can adopt their right destiny. This spatio-temporal regulation can be achieved at two key stages of the central dogma of molecular biology: transcription and translation.During my thesis, my main project was on one of the major questions in biology: how a mother cell transmits its identity to its daughter cells. One of the potential mechanisms of this inheritance would be mitotic transcriptional memory, which allows daughter cells to inherit the transcriptional status of their mothers between each generation. This process is complex because information must be able to subsist during mitosis during which most transcriptional regulators break away from their target genes. However, like bookmarks, certain factors have the capacity to remain associated with mitotic chromosomes, representing potential supports of this memory.Using high-resolution microscopy imaging of Drosophila early embryos, we are able to monitor the transcriptional status of cells and their progeny. First, we identified several transcription factors, such as GAGA associated factor (GAF) and dBrd4, remaining on mitotic chromosomes during early embryogenesis. We then developed a protocol for immunoprecipitation of mitotic chromatin followed by sequencing to identify the genes targeted by these factors during mitosis. We then inserted into some of these genes important in development, using the CRISPR / Cas9 technique, MS2 sequences allowing us to follow their transcription in real time (MCP / MS2 system). As a result, we observed that daughter cells from transcriptionally active mothers in the previous cell cycle activate faster than daughter cells from transcriptionally inactive mothers. This discovery is important because it demonstrates for the first time on a developmental endogenous gene the existence of a transcriptional mitotic memory. In addition, we have shown that this mitotic memory is dependent on the GAF factor.On a second plan, I was involved in another project about the fate of mRNAs once transcribed. Indeed, while it is important to study RNA production, it is just as important to look at where and when RNA translation takes place within the cells of the embryo. But until now, no technology has been able to measure the speed and efficiency of this translation in real time in an embryo. This is why we adapted the SunTag technique to study the translation dynamics of the twist gene encoding a major protein for gastrulation. This allowed us to determine its speed of translation within an embryo and reveal localized peri-nuclear translation allowing more efficient nuclear import. Until now, no technique has made it possible to visualize translation in real time in a multicellular organism, and its combination with high-resolution imaging now provides information on the dynamics of protein production.Durant le dĂ©veloppement embryonnaire, l’expression des gĂšnes de chaque cellule doit ĂȘtre contrĂŽlĂ©e de maniĂšre trĂšs prĂ©cise dans l’espace et dans le temps afin que celles-ci puissent adopter leur destin. Cette rĂ©gulation spatio-temporelle peut se rĂ©aliser Ă  deux Ă©tapes clĂ©s du dogme central de la biologie molĂ©culaire : la transcription et la traduction. Mon projet principal de thĂšse portait sur une des questions majeures en biologie : comment une cellule mĂšre transmet son identitĂ© Ă  ses cellules filles. Un des mĂ©canismes potentiels de cette hĂ©rĂ©ditĂ© serait la mĂ©moire transcriptionnelle mitotique qui permettrait aux cellules filles d’hĂ©riter du statut transcriptionnel de leurs mĂšres entre chaque gĂ©nĂ©ration. Pour cela, l’information doit pouvoir subsister lors de la mitose durant laquelle la plupart des rĂ©gulateurs de la transcription se dĂ©tachent de leurs gĂšnes cibles. Cependant, Ă  la maniĂšre de marque-pages, certains facteurs ont la capacitĂ© de rester associĂ©s aux chromosomes mitotiques, reprĂ©sentant de potentiels supports de cette mĂ©moire.GrĂące Ă  l’imagerie en microscopie haute rĂ©solution d’embryons de drosophile au tout dĂ©but de leur dĂ©veloppement, nous sommes capables de suivre le statut transcriptionnel des cellules et de leur progĂ©nie. Nous avons identifiĂ© plusieurs facteurs de transcription, tels que GAGA associated factor (GAF) et dBrd4, restant accrochĂ©s aux chromosomes mitotiques. Nous avons ensuite dĂ©veloppĂ© un protocole d’immuno-prĂ©cipitation de la chromatine mitotique suivi de sĂ©quençage permettant d’identifier les gĂšnes ciblĂ©s par ces facteurs durant la mitose. Grace au systĂšme MCP/MS2, nous avons pu suivre la transcription du gĂšne cible scylla et observĂ© que les cellules filles issues de mĂšres transcriptionnellement actives au cycle cellulaire prĂ©cĂ©dant s’activent plus rapidement que les cellules filles issues de mĂšres transcriptionnellement inactives. Cette dĂ©couverte met en Ă©vidence pour la premiĂšre fois l’existence d’une mĂ©moire mitotique transcriptionnelle sur un gĂšne du dĂ©veloppement. De plus, nous avons montrĂ© que cette mĂ©moire mitotique est dĂ©pendante du facteur GAF.Sur un second plan, j’ai Ă©tĂ© impliquĂ©e dans un projet portant sur le devenir des ARNm une fois transcrits. En effet, s’il est important d’étudier la transcription il est tout aussi important de regarder oĂč et quand la traduction de l’ARN se dĂ©roule au sein des cellules de l’embryon. Pour cela, j’ai participĂ© Ă  un projet de l’équipe pour adapter la technique SunTag Ă  l’embryon de Drosophile, afin d’étudier la dynamique de traduction du gĂšne twist codant pour une protĂ©ine majeure pour la gastrulation. Cela nous a permis de dĂ©terminer sa vitesse de traduction et de rĂ©vĂ©ler une traduction localisĂ©e pĂ©ri-nuclĂ©aire permettant un import nuclĂ©aire plus efficace. Jusqu’ici aucune technique ne permettait de visualiser la traduction en temps rĂ©el dans un organisme multicellulaire et sa combinaison Ă  de l’imagerie Ă  haute rĂ©solution rend maintenant accessible des informations sur la dynamique de production des protĂ©ines

    Mitotic bookmarking during early Drosophila embryogenesis

    No full text
    Durant le dĂ©veloppement embryonnaire, l’expression des gĂšnes de chaque cellule doit ĂȘtre contrĂŽlĂ©e de maniĂšre trĂšs prĂ©cise dans l’espace et dans le temps afin que celles-ci puissent adopter leur destin. Cette rĂ©gulation spatio-temporelle peut se rĂ©aliser Ă  deux Ă©tapes clĂ©s du dogme central de la biologie molĂ©culaire : la transcription et la traduction. Mon projet principal de thĂšse portait sur une des questions majeures en biologie : comment une cellule mĂšre transmet son identitĂ© Ă  ses cellules filles. Un des mĂ©canismes potentiels de cette hĂ©rĂ©ditĂ© serait la mĂ©moire transcriptionnelle mitotique qui permettrait aux cellules filles d’hĂ©riter du statut transcriptionnel de leurs mĂšres entre chaque gĂ©nĂ©ration. Pour cela, l’information doit pouvoir subsister lors de la mitose durant laquelle la plupart des rĂ©gulateurs de la transcription se dĂ©tachent de leurs gĂšnes cibles. Cependant, Ă  la maniĂšre de marque-pages, certains facteurs ont la capacitĂ© de rester associĂ©s aux chromosomes mitotiques, reprĂ©sentant de potentiels supports de cette mĂ©moire.GrĂące Ă  l’imagerie en microscopie haute rĂ©solution d’embryons de drosophile au tout dĂ©but de leur dĂ©veloppement, nous sommes capables de suivre le statut transcriptionnel des cellules et de leur progĂ©nie. Nous avons identifiĂ© plusieurs facteurs de transcription, tels que GAGA associated factor (GAF) et dBrd4, restant accrochĂ©s aux chromosomes mitotiques. Nous avons ensuite dĂ©veloppĂ© un protocole d’immuno-prĂ©cipitation de la chromatine mitotique suivi de sĂ©quençage permettant d’identifier les gĂšnes ciblĂ©s par ces facteurs durant la mitose. Grace au systĂšme MCP/MS2, nous avons pu suivre la transcription du gĂšne cible scylla et observĂ© que les cellules filles issues de mĂšres transcriptionnellement actives au cycle cellulaire prĂ©cĂ©dant s’activent plus rapidement que les cellules filles issues de mĂšres transcriptionnellement inactives. Cette dĂ©couverte met en Ă©vidence pour la premiĂšre fois l’existence d’une mĂ©moire mitotique transcriptionnelle sur un gĂšne du dĂ©veloppement. De plus, nous avons montrĂ© que cette mĂ©moire mitotique est dĂ©pendante du facteur GAF.Sur un second plan, j’ai Ă©tĂ© impliquĂ©e dans un projet portant sur le devenir des ARNm une fois transcrits. En effet, s’il est important d’étudier la transcription il est tout aussi important de regarder oĂč et quand la traduction de l’ARN se dĂ©roule au sein des cellules de l’embryon. Pour cela, j’ai participĂ© Ă  un projet de l’équipe pour adapter la technique SunTag Ă  l’embryon de Drosophile, afin d’étudier la dynamique de traduction du gĂšne twist codant pour une protĂ©ine majeure pour la gastrulation. Cela nous a permis de dĂ©terminer sa vitesse de traduction et de rĂ©vĂ©ler une traduction localisĂ©e pĂ©ri-nuclĂ©aire permettant un import nuclĂ©aire plus efficace. Jusqu’ici aucune technique ne permettait de visualiser la traduction en temps rĂ©el dans un organisme multicellulaire et sa combinaison Ă  de l’imagerie Ă  haute rĂ©solution rend maintenant accessible des informations sur la dynamique de production des protĂ©ines.It is during the development of the embryo that the gene expression in each cell must be controlled very precisely in space and time so that they can adopt their right destiny. This spatio-temporal regulation can be achieved at two key stages of the central dogma of molecular biology: transcription and translation.During my thesis, my main project was on one of the major questions in biology: how a mother cell transmits its identity to its daughter cells. One of the potential mechanisms of this inheritance would be mitotic transcriptional memory, which allows daughter cells to inherit the transcriptional status of their mothers between each generation. This process is complex because information must be able to subsist during mitosis during which most transcriptional regulators break away from their target genes. However, like bookmarks, certain factors have the capacity to remain associated with mitotic chromosomes, representing potential supports of this memory.Using high-resolution microscopy imaging of Drosophila early embryos, we are able to monitor the transcriptional status of cells and their progeny. First, we identified several transcription factors, such as GAGA associated factor (GAF) and dBrd4, remaining on mitotic chromosomes during early embryogenesis. We then developed a protocol for immunoprecipitation of mitotic chromatin followed by sequencing to identify the genes targeted by these factors during mitosis. We then inserted into some of these genes important in development, using the CRISPR / Cas9 technique, MS2 sequences allowing us to follow their transcription in real time (MCP / MS2 system). As a result, we observed that daughter cells from transcriptionally active mothers in the previous cell cycle activate faster than daughter cells from transcriptionally inactive mothers. This discovery is important because it demonstrates for the first time on a developmental endogenous gene the existence of a transcriptional mitotic memory. In addition, we have shown that this mitotic memory is dependent on the GAF factor.On a second plan, I was involved in another project about the fate of mRNAs once transcribed. Indeed, while it is important to study RNA production, it is just as important to look at where and when RNA translation takes place within the cells of the embryo. But until now, no technology has been able to measure the speed and efficiency of this translation in real time in an embryo. This is why we adapted the SunTag technique to study the translation dynamics of the twist gene encoding a major protein for gastrulation. This allowed us to determine its speed of translation within an embryo and reveal localized peri-nuclear translation allowing more efficient nuclear import. Until now, no technique has made it possible to visualize translation in real time in a multicellular organism, and its combination with high-resolution imaging now provides information on the dynamics of protein production

    Imaging translation dynamics in live embryos reveals spatial heterogeneities

    No full text
    The translation of individual mRNA molecules is a key biological process, yet this multi-step process has never been imaged in living multicellular organisms. Here we deploy the recently developed Suntag method to visualize and quantify translation dynamics of single mRNAs in living Drosophila embryos. By focusing on the translation of the conserved major epithelial-mesenchymal transition (EMT)-inducing transcription factor Twist, we identified spatial heterogeneity in mRNA translation efficiency and reveal the existence of translation factories, where clustered mRNAs are co-translated preferentially at basal perinuclear regions. Simultaneous visualization of transcription and translation dynamics in a living multicellular organism opens exciting new avenues for understanding of gene regulation during development

    Imaging translation dynamics in live embryos reveals spatial heterogeneities

    No full text
    International audienc

    ANISEED 2017: extending the integrated ascidian database to the exploration and evolutionary comparison of genome-scale datasets

    Get PDF
    International audienceANISEED (www.aniseed.cnrs.fr) is the main model organism database for tunicates, the sister-group of vertebrates. This release gives access to annotated genomes, gene expression patterns, and anatomical descriptions for nine ascidian species. It provides increased integration with external molecular and taxonomy databases, better support for epigenomics datasets, in particular RNA-seq, ChIP-seq and SELEX-seq, and features novel interactive interfaces for existing and novel datatypes. In particular, the cross-species navigation and comparison is enhanced through a novel taxonomy section describing each represented species and through the implementation of interactive phylogenetic gene trees for 60% of tunicate genes. The gene expression section displays the results of RNA-seq experiments for the three major model species of solitary ascidians. Gene expression is controlled by the binding of transcription factors to cis-regulatory sequences. A high-resolution description of the DNA-binding specificity for 131 Ciona robusta (formerly C. intestinalis type A) transcription factors by SELEX-seq is provided and used to map candidate binding sites across the Ciona robusta and Phallusia mammillata genomes. Finally, use of a WashU Epigenome browser enhances genome navigation, while a Genomicus server was set up to explore microsynteny relationships within tunicates and with vertebrates, Amphioxus, echinoderms and hemichordates
    corecore