37 research outputs found

    Cardiac metabolism — A promising therapeutic target for heart failure

    Get PDF
    Both heart failure with reduced ejection fraction (HFrEF) and with preserved ejection fraction (HFpEF) are associated with high morbidity and mortality. Although many established pharmacological interventions exist for HFrEF, hospitalization and death rates remain high, and for those with HFpEF (approximately half of all heart failure patients), there are no effective therapies. Recently, the role of impaired cardiac energetic status in heart failure has gained increasing recognition with the identification of reduced capacity for both fatty acid and carbohydrate oxidation, impaired function of the electron transport chain, reduced capacity to transfer ATP to the cytosol, and inefficient utilization of the energy produced. These nodes in the genesis of cardiac energetic impairment provide potential therapeutic targets, and there is promising data from recent experimental and early-phase clinical studies evaluating modulators such as carnitine palmitoyltransferase 1 inhibitors, partial fatty acid oxidation inhibitors and mitochondrial-targeted antioxidants. Metabolic modulation may provide significant symptomatic and prognostic benefit for patients suffering from heart failure above and beyond guideline-directed therapy, but further clinical trials are needed

    Development of Fluorinated Analogues of Perhexiline with Improved Pharmacokinetic Properties and Retained Efficacy

    Get PDF
    We designed and synthesized perhexiline analogues that have the same therapeutic profile as the parent cardiovascular drug but lacking its metabolic liability associated with CYP2D6 metabolism. Cycloalkyl perhexiline analogues 6a–j were found to be unsuitable for further development, as they retained a pharmacokinetic profile very similar to that shown by the parent compound. Multistep synthesis of perhexiline analogues incorporating fluorine atoms onto the cyclohexyl ring(s) provided a range of different fluoroperhexiline analogues. Of these, analogues 50 (4,4-gem-difluoro) and 62 (4,4,4′,4′-tetrafluoro) were highly stable and showed greatly reduced susceptibility to CYP2D6-mediated metabolism. In vitro efficacy studies demonstrated that a number of derivatives retained acceptable potency against CPT-1. Having the best balance of properties, 50 was selected for further evaluation. Like perhexiline, it was shown to be selectively concentrated in the myocardium and, using the Langendorff model, to be effective in improving both cardiac contractility and relaxation when challenged with high fat buffer

    Bilateral Remote Ischaemic Conditioning in Children (BRICC) trial:protocol for a two-centre, double-blind, randomised controlled trial in young children undergoing cardiac surgery

    Get PDF
    IntroductionMyocardial protection against ischaemic-reperfusion injury is a key determinant of heart function and outcome following cardiac surgery in children. However, with current strategies, myocardial injury occurs routinely following aortic cross-clamping, as demonstrated by the ubiquitous rise in circulating troponin. Remote ischaemic preconditioning, the application of brief, non-lethal cycles of ischaemia and reperfusion to a distant organ or tissue, is a simple, low-risk and readily available technique which may improve myocardial protection. The Bilateral Remote Ischaemic Conditioning in Children (BRICC) trial will assess whether remote ischaemic preconditioning, applied to both lower limbs immediately prior to surgery, reduces myocardial injury in cyanotic and acyanotic young children.Methods and analysisThe BRICC trial is a two-centre, double-blind, randomised controlled trial recruiting up to 120 young children (age 3 months to 3 years) undergoing primary repair of tetralogy of Fallot or surgical closure of an isolated ventricular septal defect. Participants will be randomised in a 1:1 ratio to either bilateral remote ischaemic preconditioning (3×5 min cycles) or sham immediately prior to surgery, with follow-up until discharge from hospital or 30 days, whichever is sooner. The primary outcome is reduction in area under the time-concentration curve for high-sensitivity (hs) troponin-T release in the first 24 hours after aortic cross-clamp release. Secondary outcome measures include peak hs-troponin-T, vasoactive inotrope score, arterial lactate and central venous oxygen saturations in the first 12 hours, and lengths of stay in the paediatric intensive care unit and the hospital.Ethics and disseminationThe trial was approved by the West Midlands-Solihull National Health Service Research Ethics Committee (16/WM/0309) on 5 August 2016. Findings will be disseminated to the academic community through peer-reviewed publications and presentation at national and international meetings. Parents will be informed of the results through a newsletter in conjunction with a local charity.Trial registration numberISRCTN12923441

    Inorganic nitrate in angina study:A randomized double-blind placebo-controlled trial

    Get PDF
    Background--In this double-blind randomized placebo-controlled crossover trial, we investigated whether oral sodium nitrate, when added to existing background medication, reduces exertional ischemia in patients with angina. Methods and Results--Seventy patients with stable angina, positive electrocardiogram treadmill test, and either angiographic or functional test evidence of significant ischemic heart disease were randomized to receive oral treatment with either placebo or sodium nitrate (600 mg; 7 mmol) for 7 to 10 days, followed by a 2-week washout period before crossing over to the other treatment (n=34 placebo-nitrate, n=36 nitrate-placebo). At baseline and at the end of each treatment, patients underwent modified Bruce electrocardiogram treadmill test, modified Seattle Questionnaire, and subgroups were investigated with dobutamine stress, echocardiogram, and blood tests. The primary outcome was time to 1 mm ST depression on electrocardiogram treadmill test. Compared with placebo, inorganic nitrate treatment tended to increase the primary outcome exercise time to 1 mm ST segment depression (645.6 [603.1, 688.0] seconds versus 661.2 [6183, 704.0] seconds, P=0.10) and significantly increased total exercise time (744.4 [702.4, 786.4] seconds versus 760.9 [719.5, 802.2] seconds, P=0.04; mean [95% confidence interval]). Nitrate treatment robustly increased plasma nitrate (18.3 [15.2, 21.5] versus 297.6 [218.4, 376.8] μmol/L, P < 0.0001) and almost doubled circulating nitrite concentrations (346 [285, 405] versus 552 [398, 706] nmol/L, P=0.003; placebo versus nitrate treatment). Other secondary outcomes were not significantly altered by the intervention. Patients on antacid medication appeared to benefit less from nitrate supplementation. Conclusions--Sodium nitrate treatment may confer a modest exercise capacity benefit in patients with chronic angina who are taking other background medication

    Inorganic nitrate and nitrite supplementation fails to improve skeletal muscle mitochondrial efficiency in mice and humans

    Get PDF
    Supported by Medical Research Council program grant MRC G1001340 (to M Madhani, M Feelisch, and MP Frenneaux). We thank Lesley Cheyne for their contributions to the present study. The authors’ responsibilities were as follows—VSV, M Madhani, JDH, MF, DD, MPF: designed the research; MN, NEKP, KS, BLL, M Minnion, BOF, DV, DC-T, PGC: conducted the research; DV: provided essential materials; MN, NEKP, M Minnion, BOF, DC-T, MF, PGC: analyzed the data; MN, NEKP, PGC, MPF: wrote the paper; MPF: had primary responsibility for the final manuscript; and all authors: read and approved the final manuscript. None of the authors reported a conflict of interest related to the study.Peer reviewedPublisher PD

    Long-lasting blood pressure lowering effects of nitrite are NO-independent and mediated by hydrogen peroxide, persulfides, and oxidation of protein kinase G1α redox signalling

    Get PDF
    Aims Under hypoxic conditions, nitrite (NO2-) can be reduced to nitric oxide (NO) eliciting vasorelaxation. However, nitrite also exerts vasorelaxant effects of potential therapeutic relevance under normal physiological conditions via undetermined mechanisms. We, therefore, sought to investigate the mechanism(s) by which nitrite regulates the vascular system in normoxia and, specifically, whether the biological effects are a result of NO generation (as in hypoxia) or mediated via alternative mechanisms involving classical downstream targets of NO [e.g. effects on protein kinase G1 alpha (PKG1 alpha)]. Methods and results Ex vivo myography revealed that, unlike in thoracic aorta (conduit vessels), the vasorelaxant effects of nitrite in mesenteric resistance vessels from wild-type (WT) mice were NO-independent. Oxidants such as H2O2 promote disulfide formation of PKG1 alpha, resulting in NO- cyclic guanosine monophosphate (cGMP) independent kinase activation. To explore whether the microvascular effects of nitrite were associated with PKG1 alpha oxidation, we used a Cys42Ser PKG1 alpha knock-in (C42S PKG1 alpha KI; 'redox-dead') mouse that cannot transduce oxidant signals. Resistance vessels from these C42S PKG1 alpha KI mice were markedly less responsive to nitrite-induced vasodilation. Intraperitoneal (i.p.) bolus application of nitrite in conscious WT mice induced a rapid yet transient increase in plasma nitrite and cGMP concentrations followed by prolonged hypotensive effects, as assessed using in vivo telemetry. In the C42S PKG1 alpha KI mice, the blood pressure lowering effects of nitrite were lower compared to WT. Increased H2O2 concentrations were detected in WT resistance vessel tissue challenged with nitrite. Consistent with this, increased cysteine and glutathione persulfide levels were detected in these vessels by mass spectrometry, matching the temporal profile of nitrite's effects on H2O2 and blood pressure. Conclusion Under physiological conditions, nitrite induces a delayed and long-lasting blood pressure lowering effect, which is NO-independent and occurs via a new redox mechanism involving H2O2, persulfides, and PKG1 alpha oxidation/activation. Targeting this novel pathway may provide new prospects for anti-hypertensive therapy

    Bilateral Remote Ischemic Conditioning in Children:a two-center, double-blind, randomized controlled trial in young children undergoing cardiac surgery

    Get PDF
    Objective: The study objective was to determine whether adequately delivered bilateral remote ischemic preconditioning is cardioprotective in young children undergoing surgery for 2 common congenital heart defects with or without cyanosis.Methods: We performed a prospective, double-blind, randomized controlled trial at 2 centers in the United Kingdom. Children aged 3 to 36 months undergoing tetralogy of Fallot repair or ventricular septal defect closure were randomized 1:1 to receive bilateral preconditioning or sham intervention. Participants were followed up until hospital discharge or 30 days. The primary outcome was area under the curve for high-sensitivity troponin-T in the first 24 hours after surgery, analyzed by intention-to-treat. Right atrial biopsies were obtained in selected participants.Results: Between October 2016 and December 2020, 120 eligible children were randomized to receive bilateral preconditioning (n = 60) or sham intervention (n = 60). The primary outcome, area under the curve for high-sensitivity troponin-T, was higher in the preconditioning group (mean: 70.0 ± 50.9 μg/L/h, n = 56) than in controls (mean: 55.6 ± 30.1 μg/L/h, n = 58) (mean difference, 13.2 μg/L/h; 95% CI, 0.5-25.8; P = .04). Subgroup analyses did not show a differential treatment effect by oxygen saturations (pinteraction = .25), but there was evidence of a differential effect by underlying defect (pinteraction = .04). Secondary outcomes and myocardial metabolism, quantified in atrial biopsies, were not different between randomized groups.Conclusions: Bilateral remote ischemic preconditioning does not attenuate myocardial injury in children undergoing surgical repair for congenital heart defects, and there was evidence of potential harm in unstented tetralogy of Fallot. The routine use of remote ischemic preconditioning cannot be recommended for myocardial protection during pediatric cardiac surgery

    Nitrite circumvents platelet resistance to nitric oxide in patients with heart failure preserved ejection fraction and chronic atrial fibrillation

    Get PDF
    Aims: Heart failure (HF) is a pro-thrombotic state. Both platelet and vascular responses to nitric oxide (NO) donors are impaired in HF patients with reduced ejection fraction (HFrEF) compared to healthy volunteers (HV) due to scavenging of NO, and possibly also reduced activity of the principal NO sensor, soluble guanylate cyclase (sGC), limiting the therapeutic potential of NO donors as anti-aggregatory agents. Previous studies have shown that nitrite inhibits platelet activation presumptively after its reduction to NO, but the mechanism(s) involved remain poorly characterized. Our aim was to compare the effects of nitrite on platelet function in HV vs. HF patients with preserved ejection fraction (HFpEF) and chronic atrial fibrillation (HFpEF-AF), vs. patients with chronic AF without HF, and to assess whether these effects occur independent of the interaction with other formed elements of blood. Methods and Results: Platelet responses to nitrite and the NO donor sodium nitroprusside (SNP) were compared in age-matched HV controls (n = 12), HFpEF-AF patients (n = 29) and chronic AF patients (n = 8). Anti-aggregatory effects of nitrite in the presence of NO scavengers/sGC inhibitor were determined and vasodilator-stimulated phosphoprotein (VASP) phosphorylation was assessed using Western blotting. In HV and chronic AF, both nitrite and SNP inhibited platelet aggregation in a concentration-dependent manner. Inhibition of platelet aggregation by the NO donor SNP was impaired in HFpEF-AF patients compared to healthy and chronic AF individuals, but there was no impairment of the anti-aggregatory effects of nitrite. Nitrite circumvented platelet NO resistance independently of other blood cells by directly activating sGC and phosphorylating VASP. Conclusion: We here show for the first time that HFpEF-AF (but not chronic AF without HF) is associated with marked impairment of platelet NO responses due to sGC dysfunction and nitrite circumvents the “platelet NO resistance” phenomenon in human HFpEF, at least partly, by acting as a direct sGC activator independent of NO

    Natriuretic peptides induce weak VASP phosphorylation at Serine 239 in platelets

    No full text
    Cyclic guanosine-3′,5′-monophoshate (cGMP) is the common second messenger for the cardiovascular effects of nitric oxide (NO) and natriuretic peptides (NP; for example, atrial natriuretic peptide [ANP]), which activate soluble and particulate guanylyl cyclases (sGC and pGC), respectively. The role of NO in regulating cGMP and platelet function is well documented, whereas there is little evidence supporting a role for NPs in regulating platelet reactivity. By studying platelet aggregation and secretion in response to a PAR-1 peptide, collagen and ADP, and phosphorylation of the cGMP-dependent protein kinase (PKG) substrate VASP at serine 239, we evaluated the effects of NPs in the absence or presence of the non-selective cGMP and cAMP phosphodiesterase (PDE) inhibitor, 3-isobutyl-1-methylanxthine (IBMX). Our results show that NPs, possibly through the clearance receptor (natriuretic peptide receptor-C, NPR-C) expressed on platelet membranes, increase VASP phosphorylation but only following PDE inhibition, indicating a small, localised cGMP synthesis. As platelet aggregation and secretion measured under the same conditions were not affected, we conclude that the magnitude of PKG activation achieved by NPs in platelets per se is not sufficient to exert functional inhibition of platelet involvement in haemostasis
    corecore