55 research outputs found

    Una nueva especie del género Gobio Cuvier, 1816 (Actinopterygii, Cyprinidae) de la Península Ibérica y sur de Francia

    Get PDF
    Iberian and southern French populations of the genus Gobio, considered in the past to be populations of Gobio gobio, are assigned to a new species (Gobio lozanoi n. sp.) based on genetic and morphological characters. This new species of the genus Gobio is found in the basins of the Rivers Adour in France and Bidasoa, Duero, Ebro, Guadalete, Guadiana, Guadalquivir, Júcar, Llobregat, Mondego, Mijares, Nalón, Nansa, Miño, Segura, Tajo, and Turia in the Iberian Peninsula. The new species is distinguished from Gobio gobio by a combination of the following characters: 36-39 scales on the lateral line, 3 scales below the lateral line. The distance between the pectoral and ventral fins is greater than that between the ventral and anal fins (VAL/PVL≤0.8). The preorbital distance is short and the head is wide (ED/PrOL≥0.56; PrOL/HH≤0.69; PrOL/HW≤0.68). Divergence distances in cytochrome b between Gobio gobio and the new species are “p”=4.8-5.9%.Se describe una nueva especie del género Gobio de la Península Ibérica y sur de Francia (Gobio lozanoi n. sp.), considerada hasta ahora una población de Gobio gobio, en base a caracteres genéticos y morfológicos. La nueva especie del género Gobio procede de las cuencas de los ríos Adour en Francia y Bidasoa, Duero, Ebro, Guadalete, Guadiana, Guadalquivir, Júcar, Llobregat, Mondego, Mijares, Nalón, Nansa, Miño, Segura, Tajo y Turia en la Península Ibérica. Esta nueva especie se diferencia de Gobio gobio por una combinación de los siguientes caracteres: 36-39 escamas en la línea lateral, 3 escamas por debajo de la línea lateral. La distancia entre la aleta pectoral y ventral es siempre mayor que entre la aleta ventral y la anal (VAL/PVL≤0.8). La distancia preorbital es corta y la cabeza ancha (ED/PrOL≥0.56; PrOL/HH≤0.69; PrOL/HW≤0.68). Para el citocromo b la divergencia entre Gobio gobio y la nueva especie fue de “p”=4.8-5.9%

    The Quaternary plant fossil record from the volcanic Azores Archipelago (Portugal, North Atlantic Ocean): a review

    Get PDF
    Plant fossils are known from the Azores Islands, yet poorly studied. We present a comprehensive bibliographical review for the archipelago. A first pre-scientific reference dates from late fifteenth century, while the first scientific description was reported in 1821, accounting for trunks in pyroclastic units and silicified plants within hydrothermal deposits. Throughout the second-half of the nineteenth century and the first-half of the twentieth century, prospection by naturalists and geological mapping work, led to the discovery and description of plant fossils in most islands. From the 1970s onwards, the taxonomic interest ceased, and plant fossils were used mainly for 14C dating. Recently, sediment cores from lakes and peatlands were used for palaeoecological reconstructions and to measure anthropogenic impacts. Generally, plant fossils are younger than 50 ka, although older fossils may exist. Azorean plant fossils include somatofossils of leaves, stems, logs and seeds preserved as impressions, compressions, adpressions, permineralizations, lava tree casts and mummifications. The taphonomy of macrofloral elements is usually related to explosive volcanic activity, while palynological record is associated with lake sediments and peat bogs. The persistence in palaeobotanical and palaeopalynological studies will decisively contribute to disentangle the paleodiversity, palaeoecology, and add crucial information on insular plant phylogeny and biogeography.info:eu-repo/semantics/publishedVersio

    Blastocystis spp. en perdiz, codorniz y aves esteparias. Posible efecto del estrés y subtipo zoonótico en perdices de granja

    Get PDF
    Resumen del trabajo presentado al I Congreso Ibérico de Ciencia Aplicada a los Recursos Cinegéticos (CICARC), celebrado en Ciudad Real (España) del 1 al 4 de julio de 2019.Peer reviewe

    Lack of genetic structure in euryhaline Chelon labrosus from the estuaries under anthropic pressure in the Southern Bay of Biscay to the coastal waters of the Mediterranean Sea

    Get PDF
    Over the last decade, xenoestrogenic effects have been reported in populations of thicklip grey mullet Chelon labrosus from contaminated estuaries in the Bay of Biscay, resulting in intersex condition. To understand the level of gene flow in individuals of different Basque estuaries microsatellite markers were used to evaluate the population structure and connectivity of C. labrosus from estuaries of the Basque coast. 46 microsatellites were tested and 10 validated for the analysis of 204 individuals collected from 5 selected Basque estuaries and 2 outgroups in the Bay of Cadiz and Thermaic Gulf. The polymorphic microsatellites revealed 74 total alleles, 2–19 alleles per locus. The mean observed heterozygosity (0.49 ± 0.02) was lower than the expected one (0.53 ± 0.01). There was no evidence of genetic differentiation (FST = 0.0098, P = 0.0000) among individuals or sites. Bayesian clustering analysis revealed a single population in all sampled locations. The results of this study indicate widespread genetic homogeneity and panmixia of C. labrosus across the current sampling areas spanning the Atlantic and Mediterranean basins. The hypothesis of panmixia could therefore be well supported so individuals inhabiting estuaries with high prevalence of intersex condition should be considered as members of the same single genetic group as those inhabiting adjacent estuaries without incidence of xenoestrogenicity.This work was funded by the Spanish Ministry of Science. Innovation and Universities and EU-FEDER/ERDF (BORN2bEGG PGC2018-101442-B-I00) and the Basque Government (Grants to consolidated research groups IT1302-19 and IT1743-22). A.N. is a recipient of a pre-doctoral grant PIF17/172 from the University of the Basque Country (UPV/EHU). Authors wish to thank the help of two anonymous reviewers for significantly helping in better focusing the aim of the present work

    Circulating pyruvate is a potent prognostic marker for critical COVID-19 outcomes

    Get PDF
    COVID-19; Cuantificación fluorométrica; PiruvatoCOVID-19; Quantificació fluoromètrica; PiruvatCOVID-19; Fluorometric quantification; PyruvateBackground: Coronavirus-19 (COVID-19) disease is driven by an unchecked immune response to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus which alters host mitochondrial-associated mechanisms. Compromised mitochondrial health results in abnormal reprogramming of glucose metabolism, which can disrupt extracellular signalling. We hypothesized that examining mitochondrial energy-related signalling metabolites implicated in host immune response to SARS-CoV-2 infection would provide potential biomarkers for predicting the risk of severe COVID-19 illness. Methods: We used a semi-targeted serum metabolomics approach in 273 patients with different severity grades of COVID-19 recruited at the acute phase of the infection to determine the relative abundance of tricarboxylic acid (Krebs) cycle-related metabolites with known extracellular signaling properties (pyruvate, lactate, succinate and α-ketoglutarate). Abundance levels of energy-related metabolites were evaluated in a validation cohort (n=398) using quantitative fluorimetric assays. Results: Increased levels of four energy-related metabolites (pyruvate, lactate, a-ketoglutarate and succinate) were found in critically ill COVID-19 patients using semi-targeted and targeted approaches (p<0.05). The combined strategy proposed herein enabled us to establish that circulating pyruvate levels (p<0.001) together with body mass index (p=0.025), C-reactive protein (p=0.039), D-Dimer (p<0.001) and creatinine (p=0.043) levels, are independent predictors of critical COVID-19. Furthermore, classification and regression tree (CART) analysis provided a cut-off value of pyruvate in serum (24.54 µM; p<0.001) as an early criterion to accurately classify patients with critical outcomes. Conclusion: Our findings support the link between COVID-19 pathogenesis and immunometabolic dysregulation, and show that fluorometric quantification of circulating pyruvate is a cost-effective clinical decision support tool to improve patient stratification and prognosis prediction.This work has been developed in the framework of the COVIDOMICS’ project supported by Direcció General de Recerca i Innovació en Salut (DGRIS), Departament de Salut, Generalitat de Catalunya (PoC-6-17 and PoC1-5). The research was also funded by the Programa de Suport als Grups de Recerca AGAUR (2017SGR948), the SPANISH AIDS Research Network [RD16/0025/0006]-ISCIII-FEDER (Spain) and the Centro de Investigación Biomédica en Red de Enfermedades Infecciosas-ISCIII [CB21/13/00020], Madrid, Spain. LR is supported by the Instituto de Salud Carlos III (ISCIII) under grant agreement “CD20/00105” through the program “Contratos Sara Borrell”. FV is supported by grants from the Programa de Intensificación de Investigadores (INT20/00031)-ISCIII and by “Premi a la Trajectòria Investigadora dels Hospitals de l’ICS 2018”. AR is supported by a grant from IISPV through the project “2019/IISPV/05” (Boosting Young Talent), by GeSIDA through the “III Premio para Jóvenes Investigadores 2019” and by the Instituto de Salud Carlos III (ISCIII) under grant agreement “CP19/00146” through the Miguel Servet Program. This study was also supported by grants SAF2015–65019-R and RTI2018–093919-B-100 (to SF-V.) funded by MCIN/AEI and by “ERFD A way of making Europe”; PI19/01337 to FV, PI20/00095 to VC.-M, PI20/00326 to AR and PI20/00338 to JV funded by ISCIII, cofinanced by the European Regional Development Fund (ERDF), and from Fundación Bancaria Caixa d’Estalvis i Pensions de Barcelona (HR20-00051 to SF-V). The Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM) (CB07708/0012) is an initiative of the Instituto de Salud Carlos III. SF-V acknowledges support from the Miguel Servet tenure-track program (CP10/00438 and CPII16/00008) from the Fondo de Investigación Sanitaria, cofinanced by the ERDF. VC-M acknowledges support from the Ramón y Cajal program (RYC2019-026490-I) from the Spanish Ministry of Science and Innovation, cofinanced by the ERDF. The work was also supported by Consejeria de Salud y Familia (COVID-0005-2020), Consejeria de Transformacion Economica, Industria, Conocimiento y Universidades Junta de Andalucia (CV20-85418to ER-M) and Instituto de Salud Carlos III (ISCIII) under grant agreement CP19/00159 to AGV “a way to make Europe”. ER-M was supported by the Spanish Research Council (CSIC). The funders have no roles in study design, data collection, data analysis, interpretation or the writing of this research

    Molecular phylogeny of the genus Chondrina (Gastropoda, Panpulmonata, Chondrinidae) in the Iberian Peninsula

    Get PDF
    [EN] Chondrina Reichenbach, 1828 is a highly diverse genus of terrestrial molluscs currently including 44 species with about 28 subspecific taxa. It is distributed through North Africa, central and southern Europe, from Portugal in the West to the Caucasus and Asia Minor in the East. Approximately 70% of the species are endemic to the Iberian Peninsula constituting its main center of speciation with 34 species. This genus includes many micro endemic taxa, some of them not yet described, confined to limestone habitats (being strictly rock-dwelling species). They are distributed on rocky outcrops up to 2000 m.a.s.l. It is a genus of conical-fusiform snails that differ mainly in shell characters and in the number and position of teeth in their aperture. So far, molecular studies on Chondrina have been based exclusively on the mitochondrial Cytochrome Oxidase subunit I region (COI). These studies gave a first view of the phylogeny of the genus but many inner nodes were not statistically supported. The main objective of the study is to obtain a better understanding of the phylogeny and systematics of the genus Chondrina on the Iberian Peninsula, using multilocus molecular analysis. Partial sequences of the COI and 16S rRNA genes, as well as of the nuclear Internal Transcribed Spacer 1 (ITS1-5.8S) and Internal Transcribed Spacer 2 (5.8S-ITS2-28S) were obtained from individuals of all the extant Chondrina species known from the Iberian Peninsula. In addition to this, the newly obtained COI sequences were combined with those previously published in the GenBank. Phylogenetic relationships were inferred using maximum likelihood and Bayesian methods. The reconstructed phylogenies showed high values of support for more recent branches and basal nodes. Moreover, molecular species delimitation allowed to better define the studied species and check the presence of new taxa.This work was partially funded by the Basque Government through the Research group on “Systematics, Biogeography and Population Dynamics” (IT575-13) and “Systematics, Biogeography, Behavioural ecology and Evolution” (IT1163-19). E. Somoza Valdeolmillos was supported by a PhD fellowship awarded in 2015 by the University of the Basque Country (UPV/EHU)

    Restructuring of the "Macaronesia" biogeografic unit: a marine multi-taxon biogeographical approach

    Get PDF
    The Azores, Madeira, Selvagens, Canary Islands and Cabo Verde are commonly united under the term “Macaronesia”. This study investigates the coherency and validity of Macaronesia as a biogeographic unit using six marine groups with very different dispersal abilities: coastal fishes, echinoderms, gastropod molluscs, brachyuran decapod crustaceans, polychaete annelids, and macroalgae. We found no support for the current concept of Macaronesia as a coherent marine biogeographic unit. All marine groups studied suggest the exclusion of Cabo Verde from the remaining Macaronesian archipelagos and thus, Cabo Verde should be given the status of a biogeographic subprovince within the West African Transition province. We propose to redefine the Lusitanian biogeographical province, in which we include four ecoregions: the South European Atlantic Shelf, the Saharan Upwelling, the Azores, and a new ecoregion herein named Webbnesia, which comprises the archipelagos of Madeira, Selvagens and the Canary Islandsinfo:eu-repo/semantics/publishedVersio

    Circulating pyruvate is a potent prognostic marker for critical COVID-19 outcomes

    Get PDF
    Background: Coronavirus-19 (COVID-19) disease is driven by an unchecked immune response to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus which alters host mitochondrial-associated mechanisms. Compromised mitochondrial health results in abnormal reprogramming of glucose metabolism, which can disrupt extracellular signalling. We hypothesized that examining mitochondrial energy-related signalling metabolites implicated in host immune response to SARS-CoV-2 infection would provide potential biomarkers for predicting the risk of severe COVID-19 illness. Methods: We used a semi-targeted serum metabolomics approach in 273 patients with different severity grades of COVID-19 recruited at the acute phase of the infection to determine the relative abundance of tricarboxylic acid (Krebs) cycle-related metabolites with known extracellular signaling properties (pyruvate, lactate, succinate and α-ketoglutarate). Abundance levels of energy-related metabolites were evaluated in a validation cohort (n=398) using quantitative fluorimetric assays. Results: Increased levels of four energy-related metabolites (pyruvate, lactate, a-ketoglutarate and succinate) were found in critically ill COVID-19 patients using semi-targeted and targeted approaches (p<0.05). The combined strategy proposed herein enabled us to establish that circulating pyruvate levels (p<0.001) together with body mass index (p=0.025), C-reactive protein (p=0.039), D-Dimer (p<0.001) and creatinine (p=0.043) levels, are independent predictors of critical COVID-19. Furthermore, classification and regression tree (CART) analysis provided a cut-off value of pyruvate in serum (24.54 µM; p<0.001) as an early criterion to accurately classify patients with critical outcomes. Conclusion: Our findings support the link between COVID-19 pathogenesis and immunometabolic dysregulation, and show that fluorometric quantification of circulating pyruvate is a cost-effective clinical decision support tool to improve patient stratification and prognosis prediction.This work has been developed in the framework of the COVIDOMICS’ project supported by Direcció General de Recerca i Innovació en Salut (DGRIS), Departament de Salut, Generalitat de Catalunya (PoC-6-17 and PoC1-5). The research was also funded by the Programa de Suport als Grups de Recerca AGAUR (2017SGR948), the SPANISH AIDS Research Network [RD16/0025/0006]-ISCIII-FEDER (Spain) and the Centro de Investigación Biomédica en Red de Enfermedades Infecciosas-ISCIII [CB21/13/00020], Madrid, Spain. LR is supported by the Instituto de Salud Carlos III (ISCIII) under grant agreement “CD20/00105” through the program “Contratos Sara Borrell”. FV is supported by grants from the Programa de Intensificación de Investigadores (INT20/00031)-ISCIII and by “Premi a la Trajectòria Investigadora dels Hospitals de l’ICS 2018”. AR is supported by a grant from IISPV through the project “2019/IISPV/05” (Boosting Young Talent), by GeSIDA through the “III Premio para Jóvenes Investigadores 2019” and by the Instituto de Salud Carlos III (ISCIII) under grant agreement “CP19/00146” through the Miguel Servet Program. This study was also supported by grants SAF2015–65019-R and RTI2018–093919-B-100 (to SF-V.) funded by MCIN/AEI and by “ERFD A way of making Europe”; PI19/01337 to FV, PI20/00095 to VC.-M, PI20/00326 to AR and PI20/00338 to JV funded by ISCIII, cofinanced by the European Regional Development Fund (ERDF), and from Fundación Bancaria Caixa d’Estalvis i Pensions de Barcelona (HR20-00051 to SF-V). The Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM) (CB07708/0012) is an initiative of the Instituto de Salud Carlos III. SF-V acknowledges support from the Miguel Servet tenure-track program (CP10/00438 and CPII16/00008) from the Fondo de Investigación Sanitaria, cofinanced by the ERDF. VC-M acknowledges support from the Ramón y Cajal program (RYC2019-026490-I) from the Spanish Ministry of Science and Innovation, cofinanced by the ERDF. The work was also supported by Consejeria de Salud y Familia (COVID-0005-2020), Consejeria de Transformacion Economica, Industria, Conocimiento y Universidades Junta de Andalucia (CV20-85418to ER-M) and Instituto de Salud Carlos III (ISCIII) under grant agreement CP19/00159 to AGV “a way to make Europe”. ER-M was supported by the Spanish Research Council (CSIC). The funders have no roles in study design, data collection, data analysis, interpretation or the writing of this research.Peer reviewe
    corecore