125 research outputs found

    Mineralogical mapping using airborne imaging spectrometry data

    Get PDF
    With the development of airborne, high spectral resolution imaging spectrometers, we now have a tool, that allows us to examine surface materials with enough spectral detail to identify them. Identification is based on the analysis of position and shape of absorption features in the material spectra in the visible and infrared (0.4”m to 2.5”m). These absorption features are caused by the interaction of Electro-Magnetic Radiation (EMR) with the atoms and molecules of the surface material. Airborne data were collected to evaluate these new high spectral resolution systems. The data quality was assessed prior to processing and analysis and several problems were noted for each data set (striping, geometric distortion, etc.). These problems required some preparation of the data. After data preparation, data processing methods were evaluated, concentrating primarily on the log residuals and hull quotients methods. The processing steps convert the data to a form suitable for analysis. The data was analysed using the Spectral Analysis Manager (SPAM) package, developed by JPL. Two Imaging spectrometers were evaluated. The AIS - 1 instrument was flown over an area in Queensland, Australia. Ground data and laboratory work confirmed the presence of anomalous areas detected by the instrument. The data quality was poor and only basic classification of the data was possible. Anomalies were classed as "GREEN VEGETATION", "DRY VEGETATION", "CLAY" or "CARBONATE" based on the position of the major absorptions observed. The second instrument, the GER - II was flown over an area of Nevada, USA. Ground data and laboratory work confirmed the presence of the anomalies detected by the instrument. The data quality was somewhat better. Identification of sericite, dolomite and illite was possible. However, most of the area could still only be classed in the broad groupings listed above. To conclude, the effectiveness of identification is limited to a large degree by the poor data quality. If the data quality can be improved, techniques can be applied to automatically locate and identify material spectra, from the airborne data alone

    Calibration, validation and the NERC Airborne Remote Sensing Facility

    No full text
    The application of airborne and satellite remote sensing to terrestrial applications has been dominated by empirically-based, semi-quantitative approaches, in contrast to those developed in the marine and atmospheric sciences which have often developed from rigorous physically-based models. Furthermore, the traceability of EO data and the methodological basis of many applications has often been taken for granted, with the result that the repeatability of analyses and the reliability of many terrestrial EO products can be questioned. ‘NCAVEO’ is a recently established network of Earth Observation experts and data users committed to exchanging knowledge and understanding in the area of remote sensing data calibration and validation. It aims to provide a UK-based forum to collate available knowledge and expertise associated with the calibration and validation of EO-based products from both UK and overseas providers, in different discipline areas including land, ocean and atmosphere. This paper will introduce NCAVEO and highlight some of the contributions it hopes to make to airborne remote sensing in the UK

    Machine Learning Applications in Head and Neck Radiation Oncology: Lessons From Open-Source Radiomics Challenges

    Get PDF
    Radiomics leverages existing image datasets to provide non-visible data extraction via image post-processing, with the aim of identifying prognostic, and predictive imaging features at a sub-region of interest level. However, the application of radiomics is hampered by several challenges such as lack of image acquisition/analysis method standardization, impeding generalizability. As of yet, radiomics remains intriguing, but not clinically validated. We aimed to test the feasibility of a non-custom-constructed platform for disseminating existing large, standardized databases across institutions for promoting radiomics studies. Hence, University of Texas MD Anderson Cancer Center organized two public radiomics challenges in head and neck radiation oncology domain. This was done in conjunction with MICCAI 2016 satellite symposium using Kaggle-in-Class, a machine-learning and predictive analytics platform. We drew on clinical data matched to radiomics data derived from diagnostic contrast-enhanced computed tomography (CECT) images in a dataset of 315 patients with oropharyngeal cancer. Contestants were tasked to develop models for (i) classifying patients according to their human papillomavirus status, or (ii) predicting local tumor recurrence, following radiotherapy. Data were split into training, and test sets. Seventeen teams from various professional domains participated in one or both of the challenges. This review paper was based on the contestants' feedback; provided by 8 contestants only (47%). Six contestants (75%) incorporated extracted radiomics features into their predictive model building, either alone (n = 5; 62.5%), as was the case with the winner of the “HPV” challenge, or in conjunction with matched clinical attributes (n = 2; 25%). Only 23% of contestants, notably, including the winner of the “local recurrence” challenge, built their model relying solely on clinical data. In addition to the value of the integration of machine learning into clinical decision-making, our experience sheds light on challenges in sharing and directing existing datasets toward clinical applications of radiomics, including hyper-dimensionality of the clinical/imaging data attributes. Our experience may help guide researchers to create a framework for sharing and reuse of already published data that we believe will ultimately accelerate the pace of clinical applications of radiomics; both in challenge or clinical settings

    Quantitative 18F-AV1451 Brain Tau PET Imaging in Cognitively Normal Older Adults, Mild Cognitive Impairment, and Alzheimer's Disease Patients

    Get PDF
    Recent developments of tau Positron Emission Tomography (PET) allows assessment of regional neurofibrillary tangles (NFTs) deposition in human brain. Among the tau PET molecular probes, 18F-AV1451 is characterized by high selectivity for pathologic tau aggregates over amyloid plaques, limited non-specific binding in white and gray matter, and confined off-target binding. The objectives of the study are (1) to quantitatively characterize regional brain tau deposition measured by 18F-AV1451 PET in cognitively normal older adults (CN), mild cognitive impairment (MCI), and AD participants; (2) to evaluate the correlations between cerebrospinal fluid (CSF) biomarkers or Mini-Mental State Examination (MMSE) and 18F-AV1451 PET standardized uptake value ratio (SUVR); and (3) to evaluate the partial volume effects on 18F-AV1451 brain uptake.Methods: The study included total 115 participants (CN = 49, MCI = 58, and AD = 8) from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Preprocessed 18F-AV1451 PET images, structural MRIs, and demographic and clinical assessments were downloaded from the ADNI database. A reblurred Van Cittertiteration method was used for voxelwise partial volume correction (PVC) on PET images. Structural MRIs were used for PET spatial normalization and region of interest (ROI) definition in standard space. The parametric images of 18F-AV1451 SUVR relative to cerebellum were calculated. The ROI SUVR measurements from PVC and non-PVC SUVR images were compared. The correlation between ROI 18F-AV1451 SUVR and the measurements of MMSE, CSF total tau (t-tau), and phosphorylated tau (p-tau) were also assessed.Results:18F-AV1451 prominently specific binding was found in the amygdala, entorhinal cortex, parahippocampus, fusiform, posterior cingulate, temporal, parietal, and frontal brain regions. Most regional SUVRs showed significantly higher uptake of 18F-AV1451 in AD than MCI and CN participants. SUVRs of small regions like amygdala, entorhinal cortex and parahippocampus were statistically improved by PVC in all groups (p < 0.01). Although there was an increasing tendency of 18F-AV-1451 SUVRs in MCI group compared with CN group, no significant difference of 18F-AV1451 deposition was found between CN and MCI brains with or without PVC (p > 0.05). Declined MMSE score was observed with increasing 18F-AV1451 binding in amygdala, entorhinal cortex, parahippocampus, and fusiform. CSF p-tau was positively correlated with 18F-AV1451 deposition. PVC improved the results of 18F-AV-1451 tau deposition and correlation studies in small brain regions.Conclusion: The typical deposition of 18F-AV1451 tau PET imaging in AD brain was found in amygdala, entorhinal cortex, fusiform and parahippocampus, and these regions were strongly associated with cognitive impairment and CSF biomarkers. Although more deposition was observed in MCI group, the 18F-AV-1451 PET imaging could not differentiate the MCI patients from CN population. More tau deposition related to decreased MMSE score and increased level of CSF p-tau, especially in ROIs of amygdala, entorhinal cortex and parahippocampus. PVC did improve the results of tau deposition and correlation studies in small brain regions and suggest to be routinely used in 18F-AV1451 tau PET quantification

    Global urban environmental change drives adaptation in white clover

    Get PDF
    Urbanization transforms environments in ways that alter biological evolution. We examined whether urban environmental change drives parallel evolution by sampling 110,019 white clover plants from 6169 populations in 160 cities globally. Plants were assayed for a Mendelian antiherbivore defense that also affects tolerance to abiotic stressors. Urban-rural gradients were associated with the evolution of clines in defense in 47% of cities throughout the world. Variation in the strength of clines was explained by environmental changes in drought stress and vegetation cover that varied among cities. Sequencing 2074 genomes from 26 cities revealed that the evolution of urban-rural clines was best explained by adaptive evolution, but the degree of parallel adaptation varied among cities. Our results demonstrate that urbanization leads to adaptation at a global scale

    Small world architecture for peer-to-peer networks.

    Get PDF
    Small-world phenomenon has been observed in existing peer-to-peer (P2P) networks, such as Gnutella and Freenet. Due to the similarity of P2P networks to social networks, the previous small-world model proposed by Duncan Watts can be adopted in the design of P2P networks: each node is connected to some neighbouring nodes, and a group of nodes keep a small number of long links to randomly chosen distant nodes. Unfortunately, current unstructured search algorithms have difficulty distinguishing these random long-range shortcuts. This paper presents small world architecture for P2P networks (SWAN) with a semi-structured P2P search algorithm that is used to create and find long-range shortcuts toward remote peer groups. In SWAN, not every peer node needs to be connected to remote groups, but every peer node can easily find which peer nodes have external connections to a specific peer group

    Social peer-to-peer for resource discovery.

    Get PDF
    For resource discovery in social networks, people can directly contact some acquaintances that have knowledge about the resources they are looking for. However, in current peer-to-peer networks, peer nodes lack capabilities similar to social networks, making it difficult to route queries efficiently. In this paper, we present a social-like system (Social-P2P) for resource discovery by mimicking human behaviours in social networks. Different from most informed search algorithms, peer nodes learn knowledge from the results of previous searches and no additional overhead is required to obtain extra information from neighbouring nodes. Unlike community-based P2P information sharing systems, we do not intend to create and maintain peer groups or communities consciously. Peer nodes with the same interests will be highly connected to each other spontaneously. Social-P2P has been simulated in a dynamic environment. From the simulation results and analysis, Social-P2P achieved better performance than current methods

    Small World Architecture For Peer-to-Peer Networks

    No full text
    Small-world phenomenon has been observed in existing peer-to-peer (P2P) networks, such as Gnutella and Freenet. Due to the similarity of P2P networks to social networks, the previous small-world model proposed by Duncan Watts can be adopted in the design of P2P networks: each node is connected to some neighbouring nodes, and a group of nodes keep a small number of long links to randomly chosen distant nodes. Unfortunately, current unstructured search algorithms have difficulty distinguishing these random long-range shortcuts. This paper presents small world architecture for P2P networks (SWAN) with a semi-structured P2P search algorithm that is used to create and find long-range shortcuts toward remote peer groups. In SWAN, not every peer node needs to be connected to remote groups, but every peer node can easily find which peer nodes have external connections to a specific peer group.</p

    Fault-tolerant peer-to-peer search on small-world networks

    Get PDF
    This paper presents a small world architecture for P2P networks (SWAN) for content discovery in multi-group P2P systems. A semi-structured P2P algorithm of SWAN is utilized to create and find long-range shortcuts toward remote peer groups. In SWAN, not every peer node needs to be connected to remote groups, but every peer node can easily find which peer nodes have external connections to a specific peer group. From our analysis and simulation, SWAN has the advantages of both structured and unstructured P2P networks, and can achieve good performance in both stable and dynamic environments
    • 

    corecore