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Radiomics leverages existing image datasets to provide non-visible data extraction via

image post-processing, with the aim of identifying prognostic, and predictive imaging

features at a sub-region of interest level. However, the application of radiomics is

hampered by several challenges such as lack of image acquisition/analysis method
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standardization, impeding generalizability. As of yet, radiomics remains intriguing, but not

clinically validated. We aimed to test the feasibility of a non-custom-constructed platform

for disseminating existing large, standardized databases across institutions for promoting

radiomics studies. Hence, University of Texas MD Anderson Cancer Center organized

two public radiomics challenges in head and neck radiation oncology domain. This was

done in conjunction with MICCAI 2016 satellite symposium using Kaggle-in-Class, a

machine-learning and predictive analytics platform. We drew on clinical data matched

to radiomics data derived from diagnostic contrast-enhanced computed tomography

(CECT) images in a dataset of 315 patients with oropharyngeal cancer. Contestants

were tasked to develop models for (i) classifying patients according to their human

papillomavirus status, or (ii) predicting local tumor recurrence, following radiotherapy.

Data were split into training, and test sets. Seventeen teams from various professional

domains participated in one or both of the challenges. This review paper was based

on the contestants’ feedback; provided by 8 contestants only (47%). Six contestants

(75%) incorporated extracted radiomics features into their predictive model building,

either alone (n = 5; 62.5%), as was the case with the winner of the “HPV” challenge,

or in conjunction with matched clinical attributes (n = 2; 25%). Only 23% of contestants,

notably, including the winner of the “local recurrence” challenge, built their model relying

solely on clinical data. In addition to the value of the integration of machine learning

into clinical decision-making, our experience sheds light on challenges in sharing and

directing existing datasets toward clinical applications of radiomics, including hyper-

dimensionality of the clinical/imaging data attributes. Our experience may help guide

researchers to create a framework for sharing and reuse of already published data that

we believe will ultimately accelerate the pace of clinical applications of radiomics; both in

challenge or clinical settings.

Keywords: machine learning, radiomics challenge, radiation oncology, head and neck, big data

INTRODUCTION

Radiomics, or texture analysis, is a rapidly growing field that
extracts quantitative data from imaging scans to investigate
spatial and temporal characteristics of tumors (1). To date,
radiomics feature signatures have been proposed as imaging
biomarkers with predictive and prognostic capabilities in

several types of cancer (2–6). Nevertheless, non-uniformity

in imaging acquisition parameters, volume of interest (VOI)
segmentation, and radiomics feature extraction software tools
make comparison between studies difficult, and highlight unmet
needs in radiomics (7). Specifically, reproducibility of results
is a necessary step toward validation and testing in real-world
multicenter clinical trials (8). Another commonly emphasized
bias of high-throughput classifiers such as those in radiomics
is the “curse of dimensionality,” which stems from having
relatively small datasets and a massive number of possible
descriptors (9).

Multi-institutional cooperation and data sharing in radiomics

challenges can address, in particular, the issue of dimensionality

and advance the field of quantitative imaging (10, 11). Hence,
the Quantitative Imaging Network (QIN) of the National
Cancer Institute (NCI) (12) started the “Challenges Task

Force” with singular commitment to collaborative projects
and challenges that leverage analytical assessment of imaging
technologies and quantitative imaging biomarkers (13). To
this end, and at the request of NCI and invitation from
Medical Image Computing and Computer Assisted Intervention
[MICCAI] Society, the head and neck radiation oncology
group at The University of Texas MD Anderson Cancer
Center organized two radiomics competitions. Oropharyngeal
cancer (OPC) was chosen as a clinically relevant realm
for radiomics hypothesis testing. Using manually-segmented
contrast-enhanced computed tomography (CECT) images and
matched clinical data, contestants were tasked with building one
of 2 models. These included: (i) a classification model of human
papillomavirus (HPV) status; and (ii) a predictive model of
local tumor recurrence, following intensity-modulated radiation
treatment (IMRT) (14).

We had several motivations for organizing these radiomics
challenges. First: To demonstrate that radiomics challenges
with potential clinical implementations could be undertaken
for MICCAI. Second: To identify whether Kaggle in Class,
a commercial educationally-oriented platform could be used
as an avenue to make challenges feasible in the absence of
custom-constructed websites or elaborate manpower. The main
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aim of this review is to detail the mechanics and outcomes
of our experience of using a large standardized database for
radiomics machine-learning challenges. We previously detailed
the data included in both our challenges in a recently published
data descriptor (14). Here, we will continue to outline the
“challenge within a challenge” to provide a template workflow
for initiating substantial platforms for facilitating “multi-user”
radiomics endeavors. By pinpointing these hurdles, we hope
to generate insights that could be used to improve the
design and execution of future radiomics challenges as well as
sharing of already published radiomics data in a time-effective
fashion.

MATERIALS AND METHODS FOR
CHALLENGES

At the invitation of NCI and MICCAI, the head and neck
radiation oncology group at The University of Texas
MD Anderson Cancer Center organized two public head
and neck radiomics challenges in conjunction with the
MICCAI 2016: Computational Precision Medicine satellite
symposium, held in Athens, Greece. Contestants with
machine-learning expertise were invited to construct
predictive models based on radiomics and/or clinical
data from 315 OPC patients to make clinically relevant
predictions in the head and neck radiation oncology
sphere.

Database
After an institutional review board approval, diagnostic CECT
DICOM files and matched clinical data were retrieved for
OPC patients who received curative-intent IMRT at our
institution between 2005 and 2012 with a minimum follow-up
duration of 2 years. A key inclusion criterion was pre-treatment
testing for p16 expression as a surrogate for HPV status.
315 patients with histopathologically-proven OPC were
retrospectively restored from our in-house electronic medical
record system, ClinicStation. The study was Health Insurance
Portability and Accountability Act (HIPAA) compliant,
and the pre-condition for signed informed consent was
waived (15).

We then imported contrast-enhanced CT scans of intact
tumor that were performed not only before the start of IMRT
course but also before any significant tumor volume-changing
procedures, i.e., local or systemic therapies. Although all patients
were treated at the same institute, their baseline CECT scans were
not necessarily obtained from the same scanner, i.e., different
scanners within the same institute or less commonly baseline
scans from outside institute. Hence, thorough details of images
characteristics and acquisition parameters were kept in the
DICOM header and made available as a Supplementary Table.
A publicly available anonymizer toolbox, DICOM Anonymizer
version 1.1.6.1, was employed to anonymize protected health
information (PHI) on all DICOM files in accordance with
the HIPAA, as designated by the DICOM standards from the

Attribute Confidentiality Profile (DICOM PS 3.15: Appendix E)
(16).

The selected CT scans were imported to VelocityAI 3.0.1
software (powered by VelocityGrid), which was used by two
expert radiation oncologists to segment our VOIs in a slice-
by-slice fashion. VOIs were defined as the pre-treatment gross
tumor volume (GTV) of the primary disease (GTVp), which
was also selected as the standardized nomenclature term. Gross
nodal tumor volumes also were segmented to provide a complete
imaging dataset that can benefit other radiomics studies in the
head and neck cancer domain. However, contestants were clearly
instructed to include only GTVp in regions of interest for robust
texture analysis.

Segmented structures in congruence with matched clinical
data constituted the predictor variables for both challenges.
Clinical data elements comprised patient, disease, and
treatment attributes that are of established prognostic
value for OPC (17). A matching data dictionary of concise
definitions, along with possible levels for each clinical data
attribute, was provided to contestants as a “ReadMe” CSV file
(Table 1).

We also provided contestants with a list of suggested open-
source infrastructure software that supports common radiomics
workflow tasks such as image data import and review as well as
radiomics feature computation, along with links to download the
software. After completion of the challenge, a complete digital
repository was deposited (figshare: https://doi.org/10.6084/m9.
figshare.c.3757403.v1 and https://doi.org/10.6084/m9.figshare.c.
3757385.v1) (18, 19) and registered as a public access data
descriptor (14).

Challenge Components
Challenge components were identified as a function of the
hosting platform.

Hosting Platform
In the two radiomics challenges, organized on Kaggle-in-Class,
contestants were directed to construct predictive models that (i)
most accurately classified patients as HPV positive or negative
compared with their histopathologic classification (http://
inclass.kaggle.com/c/oropharynx-radiomics-hpv), and (ii) best
predicted local tumor recurrence (https://inclass.kaggle.com/c/
opc-recurrence). Kaggle-in-Class (https://inclass.kaggle.com/) is
a cloud-based platform for predictive modeling and analytics
contests on which researchers post their data and data miners
worldwide attempt to develop the most optimal predictive
models. The overall challenge workflow is portrayed in
Figure 1.

Anonymized imaging and clinical data belonging to the cohort
of 315 OPC patients were uploaded to the Kaggle in Class server
almost evenly split between the training subset and test subset,
encompassing 150 and 165 patients, respectively, in separate
CSV files and DICOM folders. Subjects were randomly assigned
to either training or test sets via random number generation.
Caution was taken to make outcome of interest (HPV status
for the first challenge and local control for the second one)

Frontiers in Oncology | www.frontiersin.org 3 August 2018 | Volume 8 | Article 294

https://doi.org/10.6084/m9.figshare.c.3757403.v1
https://doi.org/10.6084/m9.figshare.c.3757403.v1
https://doi.org/10.6084/m9.figshare.c.3757385.v1
https://doi.org/10.6084/m9.figshare.c.3757385.v1
http://inclass.kaggle.com/c/oropharynx-radiomics-hpv
http://inclass.kaggle.com/c/oropharynx-radiomics-hpv
https://inclass.kaggle.com/c/opc-recurrence
https://inclass.kaggle.com/c/opc-recurrence
https://inclass.kaggle.com/
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Elhalawani et al. Radiomics Challenges in Radiation Oncology

TABLE 1 | Supplemental information about data provided for radiomics

challenges.

Data element Description

Patient ID Numbers given randomly to the patient after

anonymization of the DICOM protected health

identifier (PHI) tag (0010,0020) that corresponds to

medical record number

HPV/p16 status HPV status, as assessed by HPV DNA in situ

hybridization (57) and/or p16 protein expression via

immunohistochemistry, with the results described as

1 (i.e., positive) or 0 (i.e., negative)

Gender Patient’s sex

Age at diagnosis Patient’s age in years at the time of diagnosis

Race American Indian/Alaska Native, Asian, Black,

Hispanic, White, or not applicable

Tumor laterality Right, left, or bilateral

Oropharynx subsite of origin Subsite of the tumor within the oropharynx, i.e.,

base of tongue (21) or tonsil/soft palate/pharyngeal

wall/glossopharyngeal sulcus/other (no single

subsite of origin could be identified)

T category Description of the original (primary) tumor with

regard to size and extent per the American Joint

Committee on Cancer (AJCC) and Union for

International Cancer Control (UICC) cancer staging

system, i.e., T1, T2, T3, or T4 (https://

cancerstaging.org/references-tools/Pages/What-is-

Cancer-Staging.aspx)

N category Description of whether the cancer has reached

nearby lymph nodes, per the AJCC and UICC

cancer staging system, i.e., N0, N1, N2a, N2b, N2c,

or N3 (https://cancerstaging.org/references-tools/

Pages/What-is-Cancer-Staging.aspx)

AJCC stage AJCC cancer stage (https://cancerstaging.org/

references-tools/Pages/What-is-Cancer-Staging.

aspx)

Pathologic grade Grade of tumor differentiation, i.e., I, II, III, IV, I-II,

II-III, or not assessable

Smoking status at diagnosis Never, current, or former smoker

Smoking pack-years An equivalent numerical value of lifetime tobacco

exposure; 1 pack-year is defined as 20 cigarettes

smoked every day for 1 year

proportionally distributed in training and test sets. For the test
set, contestants were blinded to the outcome.

Evaluation Metric
The evaluation metric for both competitions was area under
the receiver operating characteristic curve (AUC) of the binary
outcomes, i.e., “positive” vs. “negative” for the “HPV” challenge
or “recurrence” vs. “no recurrence” for the “local recurrence”
challenge.

Scoring System
Kaggle-in-Class further splits the test set randomly into two
subsets of approximately equal size again with outcome
of interest equally distributed. One subset was made
public to contestants, named the “Public Test subset.”
The other subset was held out from the contestants, with

only challenge organizers having access to it, named the
“Private Test subset.” The performance of the contestants’
models was first assessed on the public test set and
results were posted to a “Public leaderboard.” The public
leaderboards were updated continuously as contestants
made new submissions, providing real-time feedback to
contestants on the performance of their models on the
public test subset relative to that of other contestants’
models.

The private leaderboard was accessible only to the organizers
of the challenges. Toward the end of the challenge, each
contestant/team was allowed to select his/her/their own
two “optimal” final submissions of choice. Contestants were
then judged according to the performance of their chosen
model(s) on the private test subset, according to the private
leaderboard. The contestant/team that topped the “private
leaderboard” for each challenge was declared the winner of
the challenge. The distinction between training/test set and
public/private subset terminology is further illustrated in
Figure 2.

Challenges Rules
Teams were limited to a maximum of two result submissions per
team per day. There was no maximum team size, but merging
with or privately sharing code and data with other teams was
prohibited.

Challenges Organizers-Contestants Interaction
To enable contestants to communicate with the organizing
committee, the e-mail address of one of the organizers was made
available on the Kaggle in Class and MICCAI websites. Also,
the organizers created and closely followed a discussion board
where updates or topics of common interest were publicly shared.
After announcing the winners, questionnaires were distributed
to contestants to get their feedback, which greatly contributed to
this review paper.

CHALLENGE RESULTS

Seventeen teams participated in either one or both challenges,
accounting for a total of 23 enrollments. The “HPV”
challenge recorded nine enrollments comprising three
multiple-member teams and six individual contestants.
The “local recurrence” challenge, on the other hand, had
four multiple-member teams and 10 individual contestants.
The following results are derived from the questionnaires,
which were filled out by eight teams. Detailed responses
of contestants to post-challenges surveys are tabulated in
Supplementary Table 1. Contestants came from various
professional domains, e.g., biostatistics, computer science,
engineering, medical physics, mathematics, and radiation
oncology. The dedicated time per participant for each
challenge ranged from 6 to 30 h. Teams included as many
as seven members with the same or different institutional
affiliations.

The data analytical algorithms showed wide variation in
methods and implementation strategies. The programming

Frontiers in Oncology | www.frontiersin.org 4 August 2018 | Volume 8 | Article 294

https://cancerstaging.org/references-tools/Pages/What-is-Cancer-Staging.aspx
https://cancerstaging.org/references-tools/Pages/What-is-Cancer-Staging.aspx
https://cancerstaging.org/references-tools/Pages/What-is-Cancer-Staging.aspx
https://cancerstaging.org/references-tools/Pages/What-is-Cancer-Staging.aspx
https://cancerstaging.org/references-tools/Pages/What-is-Cancer-Staging.aspx
https://cancerstaging.org/references-tools/Pages/What-is-Cancer-Staging.aspx
https://cancerstaging.org/references-tools/Pages/What-is-Cancer-Staging.aspx
https://cancerstaging.org/references-tools/Pages/What-is-Cancer-Staging.aspx
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Elhalawani et al. Radiomics Challenges in Radiation Oncology

FIGURE 1 | Workflow of radiomics challenges.

platforms used to extract quantitative radiomics features
included MATLAB, R, and Python. Most contestants
(63%) developed their own scripts to extract radiomics
features. The Imaging Biomarker Explorer (IBEX) software,
developed by the Department of Radiation Physics at
MD Anderson (20), was the second most commonly
used software among the other contestants (38%). The

machine-learning techniques used included random forest
with class balancing, logistic regression with gradient
descent or extreme gradient boosting trees, least absolute
shrinkage, and selection operator (Lasso) regression, and
neural networks. Interestingly, one contestant reported
applying an ensemble combination of classifiers, including
random forests, a naïve Bayes classifier, and Association
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FIGURE 2 | Diagram illustrating the splitting of datasets per the challenge’s rules.

for Computing Machinery classifiers, as well as boosting
algorithms, including AdaBoost, and oversampling techniques,
including Synthetic Minority Over-sampling Technique. The
most commonly used statistical tests included leave-one-out
cross-validation, the Wilcoxon rank-sum test, and sparse
matrices.

The key, relevant radiomics features selected by these various
machine-learning algorithms encompassed various first- and
second-order features. The chosen first-order features included
the “intensity” feature of maximum intensity and the “shape”
features of primary tumor volume, longest and shortest radii,
and Euclidean distance (in mm, with respect to centroids)
between the primary tumor and the lymph nodes (minimum,
maximum, mean, and standard deviation). The chosen second-
order features included gray-level co-occurrence matrix and local
binary pattern.

Key clinical data commonly selected and modeled by

contestants included smoking pack-years, T category, N category,

and tumor subsite of origin, e.g., tonsil or base of tongue. Most
contestants (77%) incorporated extracted radiomics features into

their model, either alone (62%), as was the case with the winning
team of the “HPV” challenge, or in conjunction with matched
clinical attributes (16%). Meanwhile, only 23% of contestants
built their models relying solely on clinical data, including the
winner of the “local recurrence” challenge.

Per contestant feedback, the obstacles to developing sound
machine-learning predictive models were largely technical in
nature. Fifty percent of questionnaire respondents reported
inability to extract radiomics features, especially global
directional features, for some images. This was the leading

cause of missing values, which were difficult to handle for
most contestants. Other barriers involved segmentation
issues where some VOIs—according to one contestant—
were not consistently named across the whole cohort. A few
contestants also reported that some GTVp contours did not
adequately represent the primary tumor lesions, i.e., some
slices within the VOI were not segmented, or GTVp contours
were totally absent. In some cases, only metastatic lymph
nodes (i.e., gross nodal tumor volume) were segmented,
per one contestant. Nonetheless, all but one team expressed
enthusiasm toward participating in future machine-learning
challenges.

For the “HPV” challenge, the winners were a team of academic
biostatisticians with a radiomics-only model that achieved an
AUC of 0.92 in the held-out, private test subset. Their feature
selection approach yielded the “shape” features of “mean breadth”
and “spherical disproportion” as most predictive of HPV status,
suggesting that HPV-associated tumors tend to be smaller
and more homogeneous. On the other hand, the winner of
the “local recurrence” challenge was a mathematics/statistics
college student who exclusively used clinical features to build a
model that achieved an AUC of 0.92 in the private test subset.
The AUCs of all contestants’ models and their corresponding
final ranking in the private leaderboard are provided in
Supplementary Tables 2, 3.

The winner of each challenge was invited to share their

approach and models via video conference at the Computational

Precision Medicine satellite workshop as part of the MICCAI
2016 program that took place in Athens, Greece. Moreover,

each winner was offered a manuscript acceptance (after editorial
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review) with fees waived to describe their approach and
algorithm in an international, open-access, peer-reviewed journal
sponsored by the European Society for Radiotherapy and
Oncology. The winners of the “HPV” challenge recently reported
their approach in designing a statistical framework to analyze CT
images to predict HPV status (21).

DISCUSSION

The process of designing and executing the radiomics challenge
was inevitably filled with difficult decisions and unexpected
issues, from which we have yielded numerous insights. We have
enumerated these challenges and derived lessons in Table 2.

“Challenge Within a Challenge” and
Derived Lessons
Before, during and even after the radiomics challenges, we
encountered situations which provided us insight into improving
future radiomics challenges. We will now detail learning points
derived from our experience.

Database Size
The usefulness of a database for radiomics analysis increases
as more and more cases are added. However, limits on time,
personnel, and available patient data place constraints on
database collection and thus the ability to yield insights from
radiomics analysis. Also relevant to imaging data collection is

TABLE 2 | Challenges and derived lessons from organizing open-source

radiomics challenges.

Challenges

• Paucity of open-source freely available radiomics datasets

• Establishing database: size vs. time

• Data anonymization

• Quality assurance: before, during, and after the challenge

• Understanding contestants’ preferences

• Clarity of challenge rules verbiage

• Hyperdimensionality of radiomics co-variates and subsequent overtraining

• Low post-challenge survey response rate

• Discrete scanners, acquisition parameters, and segmentation techniques

Derived Lessons

• Use common ontology guidelines to assign nomenclature for target volumes

and clinical data

• Use efficient, secure solution such as RSNA CTP to minimize time/resource

burden

• Test run data prior to start of radiomics challenge to identify additional issues

• Adopt “Public/Private leaderboard” challenges to mitigate overtraining/

overfitting

• Choice of data type and sources (i.e., single vs. multi-institutional) depends on

specific aims of radiomics challenge

• Provide contestants multiple ways to analyze data whenever possible, e.g.,

with/without artifacts to account for variation in contestants’ preferences

• Rules must be clear and consistent with all other aspects of challenge design

• Proper incentives built into the radiomics challenge encourage participation and

subsequent feedback

• Post-challenge permanent data repository and descriptor

the variation in imaging acquisition parameters and disease
states within a disease cohort. In our case, as in many practical
classification problems, HPV status and local control rates
following IMRT for OPC patients tend to be imbalanced.
The majority of OPC tend to be increasingly associated with
HPV infection and hence more favorable local control (22).
In our dataset, HPV-negative and locally recurrent OPC only
constituted 14.9 and 7.6% of the overall cohort, respectively.

Moreover, the enormous number of potential predictor
variables used in radiomics studies necessitates the use of large-
scale datasets in order to overcome barriers to statistical inference
(23). The dearth of such datasets hinders machine-learning
innovation in radiation oncology by restricting the pool of
innovation to the few institutions with the patient volume to
generate usable datasets (24).

Data Anonymization
The PHI anonymization software we applied was cumbersome,
requiring PHI tags to be manually entered on an individual basis.
For future radiomics challenges, we recommend the use of the
Clinical Trial Processor (CTP), developed by the Radiological
Society of North America (RSNA) (25). Safe, efficient, and
compatible with all commercially available picture archiving
and communication systems (PACS), RSNA CTP is designed
to transport images to online data repositories (25). RSNA
CTP conforms closely to image anonymization regulations per
the HIPAA Privacy Rule and the DICOM Working Group 18
Supplement 142 (16).

Data Curation and Standardization
Standardization and harmonization of data attributes provide
the foundation for developing comparable data among registries
that can then be combined for multi-institutional studies
(26). This further empowers validation studies and subsequent
generalization of the resulting models from such studies. In our
challenges, VOIs were not consistently coded across the whole
cohort, according to one contestant, a finding necessitating our
correction to facilitate subsequent analysis for contestants.

Hence, we recommend conforming to common ontology
guidelines when assigning nomenclature for target volumes and
clinical data. Good examples would be the American Association
of Physicists in America Task Group 263 (AAPM TG-263) (27)
and North American Association of Central Cancer Registries
(NAACCR) guidelines (28).

Volume of Interest Definition and Delineation
Another cumbersome aspect of data curation is the segmentation
of target volumes. Reliable semi-automated segmentation
methods for head and neck carcinomas and normal tissues
are currently still under investigation, so we relied on
manual segmentation (29, 30). The disadvantages of manual
segmentation relate not only to being time-consuming but also
to intra- and inter-observer variability (31). A collateral benefit of
making CT datasets with expert manual segmentations publicly
available is testing semi-automated segmentation tools (32).
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In our case, 2 radiation oncologists were blinded to relevant
clinical data and outcomes, and their segmentations were cross-
checked then double-checked by a single expert radiation
oncologist, to diminish inter-observer variability. Guidelines
of the International Commission on Radiation Units and
Measurements reports 50 and 62 were followed when defining
target volumes (33, 34).

Scanner and Imaging Parameters Variability
Variability in inter-scanner and imaging acquisition parameters,
like voxel size, reconstruction kernel, tube current and voltage
has been shown to influence radiomics analyses (35–39). Thus,
when sharing imaging data with contestants and uploading
to public data repositories, we recommend preserving all
DICOM headers aside from those containing protected health
information. These parameters, easily extractable from DICOM
headers, can also be provided as Supplementary Materials for
future radiomics challenges. Although we did not elicit specific
feedback in the post-challenge survey regarding how contestants
accounted for differences in image acquisition, we recognize the
importance of this question and recommend its inclusion in
future radiomics challenge contestant surveys.

Moreover, head and neck radiomics are subject to the effects of
image artifacts from intrinsic patient factors, such as metal dental
implants and bone. The effects of resulting streak artifacts and
beam-hardening artifacts on robustness of extracted radiomics
features have been reported (3, 40). Our approach within this
study was to remove slices of the GTV on computed tomography
that were affected by artifacts. However, this results in missing
information or contours that do not adequately represent the
primary tumor lesion, as was noted by some contestants.

Single-institutional radiomics databases like the one used in
our challenges minimize inter-scanner variability. However, in
some cases the increased heterogeneity of multi-institutional
databases is preferred. The choice (i.e., single vs. multi-
institutional data) should be challenge-dependent. Single-
institutional data may be preferred if uniformity in some imaging
characteristics (e.g., slice thickness, acquisition protocol) is
required for exploratory research purposes. Multi-institutional
data are preferred as the end goal of radiomics challenges and
studies is to generate clinically relevant models with maximum
generalizability to other patient populations.

Interplay Between Clinical and Radiomics Data

Variables
We sought to provide the option to include not only physical
variables but also key clinical attributes in the model building.
We aimed to test the capacity of radiomics features, alone or
in combination with clinical features, to model classification
or risk prediction scenarios. Interestingly, the winner of the
“local recurrence” challenge and the winner of the “HPV”
challenge used only clinical and only radiomics data, respectively.
Ironically, the fact that some contestants could generate more
effective non-radiomics models for risk prediction may subvert
the entire aim of the challenge. This in turn demonstrates the
difficulty of integrating radiomics into clinical data in both
challenge and clinical settings.

In the OPC setting, we recommend that HPV status be
provided for all cases, being an independent prognostic and
predictive biomarker in the OPC disease process (17, 41).
However, it is also important for future radiomics challenges to
consider whether other clinically relevant factors like smoking
history, tumor subsite, or race are pertinent to the end goal of
their challenge.

Quality Assurance
It is important for quality assurance measures used in radiomics
challenges to mirror those of traditional radiomics studies. If
the dataset has not been used in a radiomics analyses, it is
imperative for test analyses to identify errors. Although we had
quality assurance protocols in place, contestants still noted issues
with the dataset. Using Kaggle in Class, contestants were able to
report feedback in real time. In turn, the responses we posted
to the Kaggle in Class Forum could be viewed by all groups,
ensuring that all contestants had access to the same updated
information at all times, regardless of who originally asked
a question. As the challenge progressed, contestants reported
9 corrupt, inaccessible DICOM imaging files and 18 patients
with GTVps which did not adequately encompass the primary
gross tumor volume. In other cases, the GTVp contours were
absent, meaning these patients only had GTVn contours—the
use of which was prohibited by challenges rules. Although we
responded to contestant feedback in real time, we believe that
clear and explicitly stated challenge rules as well as an initial test
run of the data are essential.

Recruiting Contestants
Participation in the radiomics challenges by academic groups
with radiomics expertise was lower than anticipated. This
reticence may be due to the public nature of the challenge
combined with the uncertainty of success inherent in analyzing
new datasets in limited timeframes, as well as the lack of clear
translation to publishable output. An alternative explanation is
that machine learning challenges platforms like Kaggle in Class
are less well known to the radiomics community in comparison
to the MICCAI community.

To attract contestants with radiomics expertise, it is
necessary to ensure proper incentives are in place. Challenge
announcements should be made well in advance of the challenge
start date to provide sufficient time for contestants to include
the challenge into their work plans. Partnering with renown
organizations like NCI QIN and MICCAI on the challenge
provides institutional branding which may draw in academic
groups. Offers of co-authorship on future publications stemming
from the challenge, as well as seats on conference panels at which
challenge results will be shared, may boost participation.

Email distribution lists of professional societies such as
MICCAI, SPIE (The International Society for optics and
photonics) Medical Imaging, and The Cancer Imaging Archive
(TCIA) would be an effective way to reach academics. Platforms
like Kaggle and KDnuggets are more popular among non-
academics interested in machine learning challenges.

Frontiers in Oncology | www.frontiersin.org 8 August 2018 | Volume 8 | Article 294

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Elhalawani et al. Radiomics Challenges in Radiation Oncology

Understanding Contestant Preferences
Contestants in our challenge wished to have additional data
beyond what was provided. For instance, multiple contestants
noted that some patients had missing VOIs on certain slices
of the image. We had made the choice to omit these slices
because the VOI in these regions was significantly obscured by
dental artifact. However, contestants felt that shape and spatially-
derived features might be affected by omission of these slices. To
avoid this situation in future radiomics challenges, we suggest
providing two datasets, one with artifacts included and one
with artifacts excluded. This arrangement allows contestants the
choice of which dataset to analyze.

Public and Private Leaderboards
The problem of overfitting has been observed in previous
radiomics studies (7). Blinding contestants to their model’s
performance on the private test subset ensured that contestants
were not overfitting their data to the test set. Hence, we chose
the Kaggle in Class platform to host the challenges because it
offers both public and private leaderboards based on public and
held-out subsets of the test dataset, respectively. This design
choice appeared to serve its intended purpose. In the “HPV”
challenge, the first-place team on the public leaderboard had an
AUC of 1.0 but finished in last place on the private leaderboard
with an AUC of 0.52. This discrepancy suggests that their model
suffered from overfitting issues. In contrast, the winner of the
“HPV” challenge performed well on both public and private
leaderboards, indicating that their proposed model was more
generalizable.

Clarity of Challenges Rules
One difficulty inherent in radiomics challenges is variability
in interpretation of challenge rules. This variability may be
driven by differences in contestants’ technical expertise, culture,
background, and experiences. Thus, clear and unambiguous rules
and challenge design are desirable. For example, our challenge
rules clearly stated that radiomics features should be exclusively
extracted from GTVp. However, GTVp was unavailable for some
patients, typically post-surgical patients with no available pre-
treatment imaging. When combined with the fact that we also
provided GTVn for all patients, some contestants were confused
by the conflicting messages they received. Thus, to prevent
confusion it is important that the stated rules of the challenge
be consistent with all other aspects of the contestants’ experience
during the challenge.

Furthermore, while the challenges were branded as “radiomics
challenges,” we allowed the submission of models based solely on
clinical prognostic factors, as was the case for the winner of the
“local recurrence” challenge. In some instances, a clinical-only
model may be useful as a comparison tool to determine whether
there is an incremental benefit to leveraging radiomics data
compared to clinical-only models. However, the permissibility
of clinical-only models in radiomics challenges must be stated
explicitly in contest rules to prevent confusion.

Collecting Contestants’ Feedback
Another learning point relates to increasing post-contest survey
response rates. A mere 50% of contestants responded to our

post-challenge survey. To ensure a high survey response rate, we
suggest including a pre-challenge agreement in which contestants
pledge to complete the post-challenge survey as part of the
challenge. A manuscript co-authorship contingent upon survey
participation might also incentivize more contestants to fill out
the survey.

Contestants’ Responsibilities
Participation in radiomics challenges necessitates a good-faith
commitment on the part of contestants to follow through
with the challenge, even in the face of unsatisfactory model
performance. Withdrawals are antithetical to the mission of
radiomics challenges as a learning tool for both challenge
contestants and organizers to advance the field.

Permanent Data Repositories
The decision to upload our dataset to an online data repository, in
this case figshare (https://doi.org/10.6084/m9.figshare.c.3757403.
v1 and https://doi.org/10.6084/m9.figshare.c.3757385.v1) (18,
19), was not difficult. This was done to provide a curated OPC
database for future radiomics validation studies. Furthermore, all
contestants who downloaded the database during the challenge
would already have access to the data, and it would have been
impractical to ask all contestants to delete this information once
downloaded.

We are also in the process of uploading this dataset as a part
of a larger matched clinical/imaging dataset to TCIA. Versioning,
which is a built-in feature in most data repositories including
figshare, is essential for updating datasets, e.g., following quality
assurance as well as retrieving previous versions later. To date,
we have received multiple requests to use our dataset for external
validation of pre-existing models.

We chose not to make available the “ground truth” of the
private test subset data. The decision to withhold this information
diminishes the overall value of the database to researchers using
the dataset but in return preserves these test cases for future
challenges.

Post-challenge Methodology and Results

Dissemination
One potential obstacle to disseminating radiomics challenge
results relates to participant requests for anonymity. A
participant’s right, or lack thereof, to remain anonymous in
subsequent publications of challenge results must be stated
prior to the start of the challenge. Anonymity poses issues with
reporting methodologies and subsequent model performance
results, as these results may be traceable to the original online
Kaggle in Class challenge website, where identities are not
necessarily obscured. Transparency of identities, methodologies,
and results is in the spirit of data sharing and is our preferred
arrangement in radiomics challenges.

Scientific papers analyzing the individual performances of
winning algorithms submitted to the Challenge, along with
database descriptor have been or will be published (14, 21). In
general, we also recommend publishing a post-challenge data
descriptor that details data configuration as a guide for future
dataset usage (14).
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Conclusions and Future Outlook
In summary, the MICCAI 2016 radiomics challenges yielded
valuable insights into the potential for radiomics to be used
in clinically relevant prediction and classification questions in
OPC. Furthermore, our experience designing and executing the
radiomics challenge imparted lessons which we hope can be
applied to the organization of future radiomics challenges, such
as those associated with the MICCAI 2018 Conference.
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