306 research outputs found

    Evidence of Titan's Climate History from Evaporite Distribution

    Full text link
    Water-ice-poor, 5-μ\mum-bright material on Saturn's moon Titan has previously been geomorphologically identified as evaporitic. Here we present a global distribution of the occurrences of the 5-μ\mum-bright spectral unit, identified with Cassini's Visual Infrared Mapping Spectrometer (VIMS) and examined with RADAR when possible. We explore the possibility that each of these occurrences are evaporite deposits. The 5-μ\mum-bright material covers 1\% of Titan's surface and is not limited to the poles (the only regions with extensive, long-lived surface liquid). We find the greatest areal concentration to be in the equatorial basins Tui Regio and Hotei Regio. Our interpretations, based on the correlation between 5-μ\mum-bright material and lakebeds, imply that there was enough liquid present at some time to create the observed 5-μ\mum-bright material. We address the climate implications surrounding a lack of evaporitic material at the south polar basins: if the south pole basins were filled at some point in the past, then where is the evaporite

    Non-structural protein-1 is required for West Nile virus replication complex formation and viral RNA synthesis

    Get PDF
    BACKGROUND: Flavivirus NS1 is a non-structural glycoprotein that is expressed on the cell surface and secreted into the extracellular space, where it acts as an antagonist of complement pathway activation. Despite its transit through the secretory pathway and intracellular localization in the lumen of the endoplasmic reticulum and Golgi vesicles, NS1 is as an essential gene for flavivirus replication. How NS1 modulates infection remains uncertain given that the viral RNA replication complex localizes to the cytosolic face of the endoplasmic reticulum. METHODS AND RESULTS: Using a trans-complementation assay, we show that viruses deleted for NS1 (∆-NS1) can be rescued by transgenic expression of NS1 from West Nile virus (WNV) or heterologous flaviviruses in the absence of adaptive mutations. In viral lifecycle experiments, we demonstrate that WNV NS1 was not required for virus attachment or input strand translation of the infectious viral RNA, but was necessary for negative and positive strand RNA synthesis and formation of the endoplasmic reticulum-associated replication complex. CONCLUSIONS: WNV RNA lacking intact NS1 genes was efficiently translated but failed to form canonical replication complexes at early times after infection, which resulted in an inability to replicate viral RNA. These results expand on prior studies with yellow fever and Kunjin viruses to show that flavivirus NS1 has an essential co-factor role in regulating replication complex formation and viral RNA synthesis

    The norovirus NS3 protein is a dynamic lipid- and microtubule-associated protein involved in viral RNA replication

    Get PDF
    Norovirus (NoV) infections are a significant health burden to society, yet the lack of reliable tissue culture systems has hampered the development of appropriate antiviral therapies. Here we show that the NoV NS3 protein, derived from murine NoV (MNV), is intimately associated with the MNV replication complex and the viral replication intermediate double-stranded RNA (dsRNA). We observed that when expressed individually, MNV NS3 and NS3 encoded by human Norwalk virus (NV) induced the formation of distinct vesicle-like structures that did not colocalize with any particular protein markers to cellular organelles but localized to cellular membranes, in particular those with a high cholesterol content. Both proteins also showed some degree of colocalization with the cytoskeleton marker β-tubulin. Although the distribution of MNV and NV NS3s were similar, NV NS3 displayed a higher level of colocalization with the Golgi apparatus and the endoplasmic reticulum (ER). However, we observed that although both proteins colocalized in membranes counterstained with filipin, an indicator of cholesterol content, MNV NS3 displayed a greater association with flotillin and stomatin, proteins known to associate with sphingolipid- and cholesterol-rich microdomains. Utilizing time-lapse epifluorescence microscopy, we observed that the membrane-derived vesicular structures induced by MNV NS3 were highly motile and dynamic in nature, and their movement was dependent on intact microtubules. These results begin to interrogate the functions of NoV proteins during virus replication and highlight the conserved properties of the NoV NS3 proteins among the seven Norovirus genogroups

    Differential Requirements for COPI Coats in Formation of Replication Complexes among Three Genera of Picornaviridae

    Get PDF
    Picornavirus RNA replication requires the formation of replication complexes (RCs) consisting of virus-induced vesicles associated with viral nonstructural proteins and RNA. Brefeldin A (BFA) has been shown to strongly inhibit RNA replication of poliovirus but not of encephalomyocarditis virus (EMCV). Here, we demonstrate that the replication of parechovirus 1 (ParV1) is partly resistant to BFA, whereas echovirus 11 (EV11) replication is strongly inhibited. Since BFA inhibits COPI-dependent steps in endoplasmic reticulum (ER)-Golgi transport, we tested a hypothesis that different picornaviruses may have differential requirements for COPI in the formation of their RCs. Using immunofluorescence and cryo-immunoelectron microscopy we examined the association of a COPI component, ß-COP, with the RCs of EMCV, ParV1, and EV11. EMCV RCs did not contain ß-COP. In contrast, ß-COP appeared to be specifically distributed to the RCs of EV11. In ParV1-infected cells ß-COP was largely dispersed throughout the cytoplasm, with some being present in the RCs. These results suggest that there are differences in the involvement of COPI in the formation of the RCs of various picornaviruses, corresponding to their differential sensitivity to BFA. EMCV RCs are likely to be formed immediately after vesicle budding from the ER, prior to COPI association with membranes. ParV1 RCs are formed from COPI-containing membranes but COPI is unlikely to be directly involved in their formation, whereas formation of EV11 RCs appears to be dependent on COPI association with membranes

    Teleost and elasmobranch eye lenses as a target for life-history stable isotope analyses

    Get PDF
    Incrementally grown, metabolically inert tissues such as fish otoliths provide biochemical records that can used to infer behavior and physiology throughout the lifetime of the individual. Organic tissues are particularly useful as the stable isotope composition of the organic component can provide information about diet, trophic level and location. Unfortunately, inert, incrementally grown organic tissues are relatively uncommon. The vertebrate eye lens, however, is formed via sequential deposition of protein-filled fiber cells, which are subsequently metabolically inert. Lenses therefore have the potential to serve as biochemical data recorders capturing life-long variations in dietary and spatial ecology. Here we review the state of knowledge regarding the structure and formation of fish eye lenses in the context of using lens tissue for retrospective isotopic analysis. We discuss the relationship between eye lens diameter and body size, describe the successful recovery of expected isotopic gradients throughout ontogeny and between species, and quantify the isotopic offset between lens protein and white muscle tissue. We show that fish eye lens protein is an attractive host for recovery of stable isotope life histories, particularly for juvenile life stages, and especially in elasmobranchs lacking otoliths, but interpretation of lens-based records is complicated by species-specific uncertainties associated with lens growth rates

    Osteoarthritis Disease Severity in the Temporomandibular Joint and the Knee Joint: A Comparative Cadaveric Study

    Get PDF
    OBJECTIVE: The objective of this study was to determine the level of disease severity in a pilot cohort of temporomandibular joints (TMJs) and compare them to the pathology findings previously characterized in cadaveric knee joints. DESIGN: Thirty-one intact TMJs from 17 cadaveric donors were harvested and arthritic lesioning seen in the knee joint was investigated on the condyle and the fossa of the TMJ. Prevalence of gross alterations was equated and disease severity was determined for sex- and age-based donor pools using a validated, osteoarthritis (OA) disease severity scale (DSS). Knee joint DSS scores were also compared to the TMJ condyle and fossa DSS scores and a case study was carried out on a male donor that demonstrated severe OA in the both joints. RESULTS: The mandibular fossa demonstrated an increase in disease severity compared to the mandibular condyle in a mixed sex donor pool ( CONCLUSIONS: This study demonstrates that gross signs of OA in the TMJs of cadavers are comparable to pathology found in the knee. The mandibular fossa appears to be the site of more profound disease, implying translational movements may be more likely to induce biomechanically abnormal movement, loading, and OA

    Nlrp3 inflammasome activation and Gasdermin D-driven pyroptosis are immunopathogenic upon gastrointestinal norovirus infection.

    Get PDF
    Norovirus infection is the leading cause of food-borne gastroenteritis worldwide, being responsible for over 200,000 deaths annually. Studies with murine norovirus (MNV) showed that protective STAT1 signaling controls viral replication and pathogenesis, but the immune mechanisms that noroviruses exploit to induce pathology are elusive. Here, we show that gastrointestinal MNV infection leads to widespread IL-1β maturation in MNV-susceptible STAT1-deficient mice. MNV activates the canonical Nlrp3 inflammasome in macrophages, leading to maturation of IL-1β and to Gasdermin D (GSDMD)-dependent pyroptosis. STAT1-deficient macrophages displayed increased MAVS-mediated expression of pro-IL-1β, facilitating elevated Nlrp3-dependent release of mature IL-1β upon MNV infection. Accordingly, MNV-infected Stat1-/- mice showed Nlrp3-dependent maturation of IL-1β as well as Nlrp3-dependent pyroptosis as assessed by in vivo cleavage of GSDMD to its active N-terminal fragment. While MNV-induced diarrheic responses were not affected, Stat1-/- mice additionally lacking either Nlrp3 or GSDMD displayed lower levels of the fecal inflammatory marker Lipocalin-2 as well as delayed lethality after gastrointestinal MNV infection. Together, these results uncover new insights into the mechanisms of norovirus-induced inflammation and cell death, thereby revealing Nlrp3 inflammasome activation and ensuing GSDMD-driven pyroptosis as contributors to MNV-induced immunopathology in susceptible STAT1-deficient mice.Wellcome Trust BBSR
    corecore