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RESEARCH Open Access

Non-structural protein-1 is required for West Nile
virus replication complex formation and viral RNA
synthesis
Soonjeon Youn1, Rebecca L Ambrose4, Jason M Mackenzie4 and Michael S Diamond1,2,3*

Abstract

Background: Flavivirus NS1 is a non-structural glycoprotein that is expressed on the cell surface and secreted into
the extracellular space, where it acts as an antagonist of complement pathway activation. Despite its transit through
the secretory pathway and intracellular localization in the lumen of the endoplasmic reticulum and Golgi vesicles,
NS1 is as an essential gene for flavivirus replication. How NS1 modulates infection remains uncertain given that the
viral RNA replication complex localizes to the cytosolic face of the endoplasmic reticulum.

Methods and Results: Using a trans-complementation assay, we show that viruses deleted for NS1 (Δ-NS1) can be
rescued by transgenic expression of NS1 from West Nile virus (WNV) or heterologous flaviviruses in the absence of
adaptive mutations. In viral lifecycle experiments, we demonstrate that WNV NS1 was not required for virus
attachment or input strand translation of the infectious viral RNA, but was necessary for negative and positive
strand RNA synthesis and formation of the endoplasmic reticulum-associated replication complex.

Conclusions: WNV RNA lacking intact NS1 genes was efficiently translated but failed to form canonical replication
complexes at early times after infection, which resulted in an inability to replicate viral RNA. These results expand
on prior studies with yellow fever and Kunjin viruses to show that flavivirus NS1 has an essential co-factor role in
regulating replication complex formation and viral RNA synthesis.

Keywords: Flavivirus, Replication, Infection, Trans-complementation

Background
Members of the Flavivirus genus are the most important
arthropod-borne viruses causing disease in humans. This
genus includes viruses (West Nile (WNV), Japanese en-
cephalitis (JEV), yellow fever (YFV), and dengue (DENV)
viruses) that are endemic in several parts of the world [1].
Flavivirus infection causes severe disease in humans includ-
ing hemorrhagic fever, shock syndrome, liver failure, flaccid
paralysis, and encephalitis. The ~10.7 kilobase single-
stranded positive sense flavivirus RNA genome is translated
as a single polyprotein, which is cleaved into three struc-
tural proteins (C, prM/M, E) and seven nonstructural (NS)

proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, NS5) by
virus- and host-encoded proteases. Flavivirus RNA replica-
tion occurs along the cytosolic face of the endoplasmic
reticulum (ER) and requires the enzymatic actions of sev-
eral NS proteins including the viral helicase and protease
(NS3) and RNA-dependent RNA polymerase (NS5).
Flavivirus NS1 is a multi-functional 48 kDa non-

structural glycoprotein [2] that is synthesized as a mono-
mer, dimerizes after post-translational modification in
the lumen of the ER, and accumulates in extracellular
fluid as a hexamer with a lipid core [3-7]. Flaviviruses in
the JEV serocomplex also express NS1′, an additional
form of NS1 with a 52 amino acid C-terminal extension,
which is the result of ribosomal frame shift due to a con-
served pseudoknot in the 5' end of the NS2A gene [8,9].
Although its precise function remains unknown, the spe-
cific deletion of NS1′ results in attenuation of neuro-
virulence of both WNV and JEV [9,10]. NS1 is expressed
on the surface of cells through at least two mechanisms:
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(a) soluble NS1 binds back to the plasma membrane of
uninfected and infected cells [11] through interactions
with sulfated glycosaminoglycans [12]; and (b) NS1 also
is expressed directly on the plasma membrane of in-
fected cells although it lacks a canonical transmembrane
domain or targeting motif for cellular membranes. The
mechanism of direct cell surface expression remains un-
certain although some fraction may be linked through
an atypical glycosyl-phosphatidylinositol anchor [13,14]
or lipid rafts [15]. NS1 has immune evasive functions in
the extracellular space, on the surface of cells, and
within cells, as it binds to complement proteins and reg-
ulators and antagonizes their functions [16-18] and pos-
sibly, disrupts TLR3 signaling pathways [19].
Despite its transit through the secretory pathway, NS1 is

an essential gene and modulates early viral RNA replica-
tion [20-22]. Deletion of NS1 from the viral genome abro-
gates replication, although an NS1-deleted virus (ΔNS1)
can be complemented in trans by ectopic expression of
NS1. Prior studies have suggested that the essential intra-
cellular function of NS1 is due to its ability to regulate
negative strand synthesis of viral RNA [22]. Genetic and
biochemical studies have suggested that NS1 interacts
with NS4A and NS4B, transmembrane viral proteins that
span the ER, which could integrate key signals from NS1
for RNA replication occurring in the cytoplasm [23,24].
Here, we explored the function of intracellular NS1 in

regulating flavivirus replication. We confirmed prior stud-
ies [22,23,25] showing that flaviviruses containing an in-
frame deletion in NS1 fail to replicate efficiently in cells. In
contrast to earlier studies, deletion viruses were rescued by
transgenic expression of homologous (WNV) or heterol-
ogous (YFV, DENV, JEV, or Saint Louis encephalitis virus
(SLEV)) NS1, the latter occurring in the absence of adap-
tive mutations. Intracellular NS1 played a key role in regu-
lating RNA synthesis and replication complex formation.
Viral RNA lacking intact NS1 genes were efficiently trans-
lated but failed to form canonical replication complexes at
early times after infection, which resulted in an inability to
accumulate negative strand viral RNA intermediates.

Results
WNV lacking NS1 expression is replication-incompetent
but can be trans-complemented
Prior studies showed that deletion of NS1 from infec-
tious cDNA clones of Kunjin (KUNV) [25] or yellow
fever (YFV) [22] flaviviruses impaired virus replication,
which suggested that NS1 was an essential gene for in-
fection. These studies also demonstrated that KUNV
and YFV lacking NS1 could be complemented in trans
by ectopic expression of the homologous NS1. To assess
the role of NS1 in infection of a North American strain
of WNV (WNV-New York 1999), we generated an infec-
tious cDNA clone (Δ-NS1-WNV) that deleted 840

nucleotides in-frame (from 87 to 928) of the NS1 gene
(Figure 1A and see Methods); this left a small fragment
of NS1 consisting of the 86 N-terminal and 201 C-
terminal nucleotides.
After in vitro transcription and electroporation of wild

type (WNV-WT) or Δ-NS1-WNV RNA into BHK21 or
BHK21 VEEV-WNV-NS1 cells (the latter express WNV
NS1 in trans from an autonomously propagating VEEV
replicon [24]), supernatants were harvested and evaluated
for viral RNA by quantitative RT-PCR (qRT-PCR). WNV-
WT RNA was recovered readily from supernatants of both
BHK21 or BHK21 VEEV-WNV-NS1 cells. In comparison,
while similar amounts of Δ-NS1-WNV RNA were present
in the supernatant of BHK21 VEEV-WNV-NS1 cells,
much lower levels (>105-fold) were recovered from the su-
pernatants of BHK21 cells (Figure 1B). To confirm that
Δ-NS1-WNV could be rescued only in cells expressing
NS1, supernatant from BHK21 VEEV-WNV-NS1 cells
transfected with Δ-NS1-WNV was used to infect a sec-
ond set of BHK21 or BHK21 VEEV-WNV-NS1 cells. At
30 hours after infection, cells were analyzed for WNV E
and NS5 protein expression by confocal microscopy
and flow cytometry. Only BHK21 VEEV-WNV-NS1 but
not BHK21 cells infected with Δ-NS1-WNV showed
evidence of productive infection and WNV antigen ex-
pression (Figure 1C and D).
To address the relative efficiency of trans-complementation

of Δ-NS1-WNV, growth kinetics of infectious WNV-WT
and Δ-NS1-WNV were compared on BHK21 and BHK21
VEEV-WNV-NS1 cells by focus-forming assay (Figure 1E).
Consistent with the immunofluorescence data, Δ-NS1-WNV
failed to produce infectious foci on BHK21 cells con-
firming that it fails to replicate efficiently in the absence
of NS1 expression. However, Δ-NS1-WNV growth kinet-
ics on BHK21 VEEV-WNV-NS1 cells were comparable to
WNV-WT infection on BHK21 cells, with no appreciable
difference observed at any time point examined (P > 0.5).
WNV-WT also replicated more efficiently on BHK21
VEEV-WNV-NS1 cells (10 to 15-fold higher levels com-
pared to BHK21 cells, P < 0.01) at early time points (16
and 24 hours) after infection, suggesting a difference in in-
fectivity of the cells was due to expression of the VEEV
replicon or ectopic expression of WNV-NS1. Experiments
were repeated with cells expressing a VEEV replicon that
lacked NS1 (BHK21-VEEV empty). As these cells sus-
tained similar levels of WNV-WT infection compared to
the parent BHK21 cells (data not shown), ectopic expres-
sion of NS1 improves infectivity of WNV-WT, at least
during the early stages of replication.

NS1 protein expression is required for trans-complement
of Δ-NS1-WNV
Although flaviviruses lacking NS1 can be complemented
in trans when NS1 is introduced as part of plasmid or
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Figure 1 (See legend on next page.)

Youn et al. Virology Journal 2013, 10:339 Page 3 of 14
http://www.virologyj.com/content/10/1/339



autonomously propagating replicon, it remains unclear
whether this is due to expression of NS1 protein or the
presence of RNA elements in the NS1 gene. Indeed, RNA
elements in the flavivirus genome can bind host factors
that are required for replication [26,27]. To evaluate this
hypothesis, a stop codon was inserted into the codon of
the eighth amino acid of NS1 after the signal peptide and
cloned into the VEEV replicon (Figure 2A). BHK21 cells
propagating the VEEV-WNV-NS1-internal stop (IS) repli-
con transcribed NS1 RNA (Figure 2B) but did not express
protein (Figure 2C): flow cytometric analysis showed that
NS1 protein was produced in BHK21 VEEV-WNV-NS1
but not BHK21 VEEV-WNV-NS1-IS cells (data not
shown). When BHK21 VEEV-WNV-NS1-IS cells were in-
fected with Δ-NS1-WNV, infectious virus was not recov-
ered from the supernatant (Figure 2D). Thus, the presence
of an NS1 RNA transcript was not sufficient to trans-
complement the infectivity defect associated with a dele-
tion of NS1. Rather, NS1 protein is required for WNV
replication.

NS1′ trans-complements Δ-NS1 viruses
The JEV serocomplex of flaviviruses produces a second
NS1 species, NS1′, which is generated as a product of a
ribosomal frameshift [9,10,28]. As NS1′ reportedly con-
tributes to the pathogenesis of WNV [9], we tested
whether its expression would complement the infectivity
of Δ-NS1. We ectopically expressed NS1′ (amino acids
768 to 1195 of the viral coding sequence) in a VEEV rep-
licon in BHK21 cells (Figure 2C). Intracellular expres-
sion levels of NS1′ were comparable although slightly
lower than that achieved in cells ectopically expressing
NS1 (Figure 2E). Viral growth analysis revealed that
transgenic expression of NS1′ also could complement
the replication defect associated with Δ-NS1-WNV in-
fection (Figure 2D).

A deletion of WNV NS1 is complemented by NS1 from
different flaviviruses
A prior study showed that YFV with a deletion in NS1
was not trans-complemented by DENV-2 NS1 without a
compensatory adaptive mutation in the NS4A gene [23].
To test whether Δ-NS1-WNV could be complemented

by NS1 from other flaviviruses, we expressed JEV, SLEV,
DENV-2, and YFV NS1 using distinct VEEV replicons.
Expression of each flavivirus NS1 was confirmed by flow
cytometry using species-specific or cross-reactive (e.g.,
9NS1) anti-flavivirus NS1 MAbs (Figure 3A). Δ-NS1-
WNV that was prepared in BHK21 VEEV-WNV-NS1
cells was titered by plaque and focus-forming assays dir-
ectly on BHK21 cells expressing JEV, SLEV, DENV-2, or
YFV NS1; this approach limits the development of
adaptive mutations. Each heterologous flavivirus NS1
expressed from VEEV replicons trans-complemented
Δ-NS1-WNV (Figure 3B). However, DENV-2, YFV, and
SLEV NS1 trans-complemented Δ-NS1-WNV with
smaller plaques size or lower number (5 to 240-fold) of
infectious foci compared to cells expressing WNV NS1
(Figure 3C); these differences in relative infectivity could
not be attributed to lower expression of heterologous NS1
(Figure 3A). Only cells expressing JEV NS1, which is the
most closely related to WNV (~78% identity at the amino
acid level), supported the large plaques and high viral yield
that were seen with the complementing cell expressing
WNV NS1. Given that adaptive mutations were required
for trans-complementation of Δ-NS1 YFV with NS1 from
heterologous flaviviruses [23], we sequenced the complete
genomes of Δ-NS1 secreted WNV from cells expressing
WNV, DENV-2, or YFV NS1. No specific mutation was
identified in viruses produced by trans-complementing
cells expressing DENV-2 or YFV NS1 compared to WNV
NS1 (data not shown). Thus, heterologous flavivirus NS1
can trans-complement Δ-NS1 WNV without further pas-
sage or adaptation.

Δ-NS1-WNV can enter cells and undergo input strand
translation
To define the stage in the viral lifecycle that was affec-
ted by a deletion in NS1 detailed cellular experiments
were undertaken. Initially, we assessed whether trans-
complemented Δ-NS1-WNV efficiently attached and en-
tered cells, BHK21 cells were incubated with the same
MOI of WNV or Δ-NS1-WNV for one hour at 4°C or
37°C. After extensive washing, bound virus was quanti-
fied by measuring genome copy number by qRT-PCR
against the positive strand of WNV RNA. At the same

(See figure on previous page.)
Figure 1 Trans-complementation of Δ-NS1-WNV with ectopically expressed WNV NS1. A. Scheme for construction of Δ-NS1-WNV.
Nucleotides 87 to 928 of the NS1 gene were deleted after restriction digest with the BstEII enzyme. B. Recovery of WNV RNA in supernatant after
transfection of Δ-NS1-WNV or WNV-WT RNA into BHK21 or BHK21-VEEV-WNV NS1 cells. 12 hours post transfection, supernatant was harvested and
assessed for levels of viral RNA by qRT-PCR of the E gene. The results are the average of two independent experiments performed in triplicate.
C-D. Immunofluorescence (C) or flow cytometry (D) staining of WNV E and NS5 antigen after mock infection or infection of Δ-NS1-WNV or
WNV-WT in BHK21 or BHK21-VEEV-WNV NS1 cells. Cells were infected at an MOI of 5, and at 26 hr post infection, cells were fixed, permeabilized, and
stained with anti-E (red), anti-NS5 (green), or a nuclear stain (blue). Results are representative of several independent experiments.
E. Single-step growth kinetics of Δ-NS1-WNV or WNV-WT in BHK21 or BHK21-VEEV-WNV NS1 cells. Cells were infected at an MOI of 5 and supernatants
were titrated on BHK21-VEEV-WNV NS1 cells by focus-forming assay. The dashed line indicates the limit of detection of the assay. Results are the aver-
age of several independent experiments performed in triplicate. Error bards indicate standard deviations.
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Figure 2 Trans-complementation of Δ-NS1-WNV with non-translated NS1 or ectopically expressed WNV NS1′. A. Scheme for construction
of a VEEV replicon that encodes a non-translated form of NS1 containing an internal stop codon at the 5′ end. B. Agarose gel electrophoresis
showing PCR of the cDNA of full-length NS1 and NS1 with an internal stop codon. The bands are slightly different in size due to the use of
distinct primer sets. C. Western blot of NS1 in BHK21 cells propagating replicons encoding NS1-IS (internal stop), NS1, or NS1′. NS1 migrates as a
doublet reflecting intracellular NS1 (non-glycosylated, lower band) and cell-surface NS1 (glycosylated, upper band). NS1′ in cell lysates reflects only
an intracellular non-glycosylated form, as it is not expressed appreciably on the cell surface (data not shown). D. Growth kinetics of Δ-NS1-WNV in
BHK21-VEEV-WNV NS1, BHK21-VEEV-WNV-NS1′, or BHK21-VEEV WNV NS1 IS cells. Cells were infected at an MOI of 1, and supernatants were titrated
on BHK21-VEEV-WNV NS1 cells by focus-forming assay. The dashed line indicates the limit of detection of the assay. Results are the average of
two independent experiments performed in triplicate. Error bards indicate standard deviations. E. Expression of NS1 and NS1′ in the VEEV replicon
in BHK21 cells, as judged by (left) flow cytometry. Experiments in panels B, C, and E reflect one of several independent experiments.
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MOI, Δ-NS1-WNV showed equivalent levels of attach-
ment to or entry of cells compared to WNV-WT
(Figure 4A).
We next assessed steps prior to viral RNA synthesis and

replication complex formation by evaluating the amount
of viral antigen present in the cell at times that preceded
RNA replication. At the same MOI of 5, WNV or Δ-NS1-
WNV was added to BHK21 or BHK21 VEE-WNV-NS1
cells. Virus was incubated for one hour at 37°C, and un-
bound virus was removed after extensive washing. Virus

internalization was tracked by confocal microscopy using
an anti-WNV MAb against the E protein. At two hours
after WNV and Δ-NS1-WNV infection, punctate staining
of E protein from was observed in BHK21 and BHK21
VEE-WNV-NS1 cells (Figure 4B-D), consistent with fla-
vivirus entry through endosomal pathways [29,30]. By
8 hours, BHK21 cells infected with WNV-WT or BHK21
VEE-WNV-NS1 cells infected with WNV-WT or Δ-NS1-
WNV showed evidence of nascent E and NS5 protein syn-
thesis, with a reticular pattern of staining consistent with

Figure 3 Trans-complementation of Δ-NS1-WNV by flavivirus NS1. A. Expression of homologous or heterologous flavivirus NS1 in BHK21
cells using VEEV replicons. WNV (wild type or internal stop (IS), DENV-2, JEV, SLEV, or YFV NS1 were cloned and expressed in VEEV replicons and
stable cells propagating these were generated. Cells were stained for NS1 expression with an irrelevant control MAb (E16, anti-WNV E), an
anti-DENV-2 NS1 MAb (2G6), anti-WNV NS1 MAb (4NS1), a cross-reactive NS1 MAb (9NS1), and anti-YFV NS1 MAb (4E3). The results are
representative of several independent experiments. Red arrows indicate positive expression that was over levels of the negative control MAb.
B. Growth kinetics of Δ-NS1-WNV in BHK21-VEEV cells expressing WNV, DENV-2, SLEV, JEV, YFV NS1, or no insert (empty). Cells were infected at an
MOI of 1, and supernatants were titrated on BHK VEEV WNV NS1 cells by focus-forming assay. The dashed line indicates the limit of detection of
the assay. Results are the average of two independent experiments performed in triplicate. Error bards indicate standard deviations
(most of which are smaller than the indicated symbols). C. Examples of (top) focus-forming or (bottom) plaque assays with Δ-NS1-WNV
trans-complemented in BHK21-VEEV cells expressing WNV, DENV-2, SLEV, JEV, or YFV NS1. One representative experiment of three is shown.
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its initial localization to the ER (Figure 4E-G, and data not
shown). In contrast, at 8 hours, BHK21 cells infected with
Δ-NS1-WNV showed a loss of E protein staining and no
NS5 staining, as would be expected with a failure to repli-
cate positive strand viral RNA.
To further define defects in the viral lifecycle associ-

ated with a deletion of NS1, we assessed input strand
translation. To differentiate input strand protein during
the initial translation period, cells were labeled biosyn-
thetically and WNV E protein was immunoprecipitated
from lysates at specified times. BHK21-VEEV-NS1 cells
or BHK21-VEEV-empty cells were infected with Δ-NS1-
WNV. One hour later, cells were placed in cysteine-
methionine-free medium, pulsed for 30 minutes with
35S-methionine-cysteine, and nascently generated E pro-
tein was detected by immunoprecipitation (Figure 5). As
E protein translation was observed in Δ-NS1-WNV-in-
fected BHK21-VEEV-empty and BHK21-VEEV-NS1
cells, NS1 was not required in cis for initial input strand
translation. By two hours, however, translation of the in-
put strand was no longer readily detected likely due to
recruitment of the viral RNA into the replication com-
plex. By later time points (e.g., 12 hours), E protein
translation again was observed in Δ-NS1-WNV-infected
BHK21-VEEV-NS1 cells but not in cells lacking trans-
genic expression of NS1.

Δ-NS1-WNV shows a defect in viral RNA synthesis
NS1 is believed to be required for flavivirus infection be-
cause of an essential function in viral RNA translation or

replication [22]. To address whether Δ-NS1-WNV had a
defect at or before RNA synthesis, we monitored viral
RNA accumulation over time using asymmetric strand-
specific qRT-PCR [31] (Figure 6A and B). Notably,
WNV-WT and Δ-NS1-WNV showed a similar trend in
BHK21 VEEV-WNV-NS1 cells through 5 hours after in-
fection with decay in the levels of negative and positive
strand RNA. However, by 7 hours after WNV-WT or
Δ-NS1-WNV infection, negative and positive strand
RNA increased in BHK21 VEE-WNV-NS1 cells, al-
though the levels of viral RNA in Δ-NS1-WNV-infected
cells did not reach those seen with WNV-WT. In com-
parison, in BHK21 VEE-WNV-NS1-IS (internal stop)

Figure 4 Δ-NS1-WNV virus does not have an attachment defect. A. Direct binding to BHK21 cells. An MOI of 1 of WNV-WT or Δ-NS1-WNV
was incubated at 4°C or 37°C with BHK21 cells for one hour. Unbound virus was removed by centrifugation and washing, and bound and/or
internalized virus was quantified after cell lysis and RNA purification using qRT-PCR and a primer and probe set specific for positive strand specific
WNV RNA. Values were normalized to 18S rRNA levels to account for possible differences in cell number. Results are the average of three
independent experiments, and differences were not statistically significant. B-G. BHK21 (B-C and E-F) or BHK21 VEEV NS1 (D, G) were infected
with WNV-WT (B,E) or Δ-NS1-WNV (C-D, and F-G) at an MOI of 5 for one hour and then unattached virus was removed by extensive washing.
Two (top panels) or eight (bottom panels) hours later, cells were fixed, permeabilized and stained with anti-E (red) or anti-NS5 (green) antibodies,
or a nuclear stain (blue). Yellow arrows indicate E protein in a punctate staining pattern prior to replication, consistent with virus that is entering
cells through an endocytic pathway. Magenta arrows denote E and NS5 staining that occurs after viral replication has ensued. The results are
representative of several independent experiments.

Figure 5 Input strand translation of Δ-NS1-WNV in
BHK21-VEEV-empty and BHK21-VEEV-WNV-NS1 cells. An MOI of
5 of Δ-NS1-WNV was incubated at 37°C with (left) BHK21-VEEV-empty or
(right) BHK21-WNV-VEEV-NS1 cells. At 1, 2, or 12 hours, cells were starved
in cysteine-methionine deficient medium for 30 minutes, and then
pulse-labeled with 35S-cysteine-methionine for an additional 30 minutes.
Cells were lysed (see Methods), immunoprecipitation was performed
with an anti-E protein MAb, proteins were electrophoresed, and gels
were subjected to autoradiography. The arrow indicates the mobility of
the E protein band. The results are representative of three
independent experiments.
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cells, WNV-WT showed increased negative and positive
strand RNA whereas Δ-NS1-WNV did not.

Δ-NS1-WNV does not form a replication complex
Given the absence of viral RNA accumulation in cells in-
fected with Δ-NS1-WNV, we hypothesized that NS1
might be essential for formation of the viral replication
complex that forms on the ER membrane. To begin to
assess this, we took advantage of an existing CMV
launched infectious cDNA clone of the Kunjin strain of
WNV (pKUN1) [35], and generated Δ-NS1 (deletion of
amino acids 5 to 298 of NS1) and NS5 polymerase dead
(GDD to GAA at amino acids 666 and 667) mutant plas-
mids [36]. We used this approach so viral proteins could

accumulate in the cell in the absence of a requirement
for active RNA replication. Two days after transfection,
Vero cells were analyzed by immunofluorescence mi-
croscopy for co-localization of NS3 and NS5 in the rep-
lication complexes. Transfection of the parent cDNA
clone (pKUN1) resulted in the co-localization of NS3,
NS5, and dsRNA in puncta at the ER (Figure 6C). In
contrast, transfection of Vero cells with pKUN1-NS5-
GAA or pKUN1-Δ-NS1 resulted in accumulation of
NS3 and NS5 without recruitment of NS3 into puncta
at the ER, the sites of the viral replication complex
(Figure 6D and E). Moreover, labeling of double-stranded
RNA was absent in pKUN1-NS5-GAA or pKUN1-
Δ-NS1 transfected cells. In comparison, transfection of

Figure 6 A deletion of WNV NS1 affects viral RNA synthesis and formation of the replication complex. A-B. Measurement of negative
(A) or positive (B) strand viral RNA in BHK21-VEEV-NS1 or BHK21-VEEV-NS1-IS (premature stop codon) cells infected with WNV-WT or Δ-NS1-WNV. The
indicated cells were infected with WNV-WT or Δ-NS1-WNV at an MOI of 5. At the indicated time points, viral RNA was harvested and strand-specific
qRT-PCR [31,32] was performed. The results are the average of two independent performed in triplicate. The very low levels of negative strand viral
RNA at input (t = 0) have been reported previously for DENV and WNV [33,34], and possibly reflect delivery of viral RNA in exosomes or defective viruses
with inappropriate packing of RNA intermediates. C-E. Vero cells were transfected with CMV-launched infectious cDNA clones of (C) wild type KUNV
(pKUN1-wild type), (D) KUNV with a mutation in NS5 that abolishes RNA polymerase activity (pKUN1-NS5 GDD/GAA), or (E) Δ-NS1-WNV KUNV
(pKUN1-Δ-NS1). 48 hours later, cells were co-stained with antibodies against (top panels) NS3 and dsRNA, (middle panels) NS3 and NS1, or
(bottom panels) NS4A and NS5. Nuclei were stained blue with DAPI. Images were processed by confocal microscopy. Representative images from three
independent experiments are shown.
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BHK21-VEEV-NS1 complementing cells with pKUN1-
Δ-NS1 but not pKUN1-NS5-GAA resulted in the forma-
tion of replication complexes (identified by dsRNA) that
co-localized with NS3 protein (Figure 7). Collectively,
these data confirm that NS1 is required for viral RNA syn-
thesis, and without this, replication complexes fail to form
efficiently.

Discussion
Flavivirus NS1 is a non-structural glycoprotein that is
expressed on the plasma membrane of infected cells and
secreted into the extracellular space. Secreted NS1 antago-
nizes complement function in solution and on the plasma
membrane surface, and thus serves an immune evasion
function [16-18,37]. Within the cell, even though it is lo-
calized to the lumen of the ER and viral replication occurs
on the cytosolic face of the ER, NS1 is an essential gene
that regulates early viral RNA replication [22,38]. How this
occurs has been poorly understood, although prior studies
suggested NS1 is required for a step proximal to viral
RNA synthesis [22], possibly through interactions with the
viral transmembrane proteins NS4A [23] or NS4B [24],
both of which have direct proximity to the replication
complex on the cytosolic face of the ER membrane. In the
current study, using two WNV strains that lack a func-
tional NS1 gene and a trans-complementation system, we
show that while WNV NS1 was not required for input
strand translation of the infectious viral RNA, it was ne-
cessary for negative and positive strand RNA synthesis
and formation of the replication complex.

While the ability of ectopically-expressed NS1 to trans-
complement flaviviruses (WNV or YFV) containing gene
deletions in NS1 has been demonstrated previously
[22,25], our studies show uniquely for WNV that heterol-
ogous NS1 from DENV, JEV, SLEV, and YFV all can serve
this function. Each heterologous flavivirus NS1 expressed
from VEEV replicons trans-complemented Δ-NS1-WNV
without further passage. Nonetheless, we observed differ-
ences in efficiency, as trans-complementation with DENV,
YFV, and SLEV NS1 resulted in smaller plaques sizes and/
or lower numbers of infectious foci compared to cells ec-
topically expressing NS1 from homologous (WNV) or the
most closely related (JEV) flaviviruses. In comparison, a
prior study showed that Δ-NS1 YFV could not be trans-
complemented by DENV-2 NS1 without adaptation, pos-
sibly due to an inability to interact with NS4A and the
remainder of the YFV replication complex [23]. Thus, the
requirements for regulating replication by NS1 appear
conserved enough to allow for trans-complementation of
Δ-NS1-WNV by NS1 from other mosquito-transmitted
flaviviruses.
Our detailed kinetic experiments demonstrating that an

absence of WNV NS1 affects viral RNA synthesis as
judged by strand-specific qRT-PCR confirm and extend
earlier results with Δ-NS1 YFV that were obtained by
Northern blotting [22]. We show that trans-complemented
Δ-NS1 WNV bound to and entered cells, and the input
strand of genomic RNA was translated at early time points.
Moreover, by using a CMV launched wild type and mutant
(Δ-NS1 or NS5 polymerase dead) WNV-KUNV, we

Figure 7 Transgenic expression of NS1 rescues the ability of an NS1 deletion virus to form dsRNA replication complexes. BHK21-VEEV-NS1
cells were transfected with CMV-launched infectious cDNA clones of pKUN1-WT, pKUN1-NS5 GDD/GAA, or pKUN1-Δ-NS1. 48 hours later, cells were
co-stained with antibodies against dsRNA (left panels) or NS3 (middle panels). Nuclei were stained blue with DAPI and images were merged
(right panels). Images were processed by confocal microscopy. Representative images from three independent experiments are shown.
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showed that NS1 is required for formation of the replica-
tion complex and recruitment of other non-structural pro-
teins (e.g., NS3) to the vesicle packets [39] associated with
ER membranes; the strength of this experimental approach
is that it allows for continued transcription and translation
of viral non-structural genes in the absence of a require-
ment for active replication. However, it remains unclear
whether the absence of replication complex after transfec-
tion of Δ-NS1 WNV-KUNV was due to the lack of pro-
duction of dsRNA or the failure to recruit key viral and
possibly, host proteins to the specialized ER membranes,
which serve as the site of flavivirus replication.

Conclusions
Our experiments establish that WNV NS1 contributes
to viral replication. Whereas soluble NS1 functions to
antagonize innate immune responses through interac-
tions with complement or pathogen recognition recep-
tors [16,17,19,37], intracellular NS1 serves a discrete
purpose during viral RNA synthesis, possibly to help
form or stabilize the replication complex. Ongoing stud-
ies are planned to define the precise molecular details by
which NS1 executes functions at different stages of the
flavivirus virus lifecycle.

Methods
Cells and viruses
BHK21 cells were grown in complete Dulbecco’s modified
Eagle’s medium (DMEM) (supplemented with 10% fetal
bovine serum (FBS), penicillin, streptomycin, 10 mM
HEPES pH 7.3, and non-essential amino acids) in a 5% hu-
midified CO2 incubator at 37°C. BHK21 cells propagating
VEEV replicons were maintained in complete DMEM
supplemented with 5 μg/ml of puromycin. Infection ex-
periments were performed with the New York 1999 strain
(385–99) of WNV, which was derived from an infectious
cDNA clone [40], or WNV-KUNV, as detailed below.

Generation of cells propagating VEEV replicons
expressing flavivirus NS1
Full length NS1 including the N-terminal signal sequences
from WNV (strain New York 1999, amino acids 768 to
1143), DENV-2 (strain D2S10, amino acids 776 to 1127),
YFV (strain 17D, amino acids 760 to 1136), SLEV (strain
GHA6, amino acids 766 to 1141), and JEV (strain 14-14-2,
amino acids 771 to 1146) were amplified from viral RNA
or infectious clone cDNA by RT-PCR and PCR using
specific primers (Table 1), and cloned into pSTBlue TA
(EMD Millipore). To clone the NS1′ form of WNV, one
additional nucleotide (T) was introduced at the site of
the −1 frame shift by QuickChange mutagenesis using the
following primers: forward: 5′-GATATGATTGACCCTT
TTTCAGTTGGGCCTTCTG-3′, reverse: 5′-CAGAAGG
CCCAACTGAAAAAGGGTCAATCATATC-3′, this re-
sulted in the generation of an NS1′ with an additional 52
amino acids at the C-terminus. After sequence verifica-
tion, all NS1 genes were subcloned into a modified pSC-B
W/VEEV shuttle vector and then into a VEEV replicon
(pTC83new/Pac [41]; gift of I. Frolov) using an XbaI site.
VEEV replicon plasmids encoding NS1 were linearized
with MluI and used as templates for in vitro transcription
using an SP6 DNA-dependent RNA polymerase mMES-
SAGE mRNA transcription kit (Ambion) according to the
manufacturer’s instruction. RNA transcripts were intro-
duced into cells using a GenePulser Xcell electroporator
(Bio-Rad) at 850 V, 25 μF, and infinite Ω, and cells ex-
pressing VEEV replicons were selected with puromycin
(5 μg/ml) over one week. Flavivirus NS1 expression was
confirmed by flow cytometry as described below.

Construction and production of Δ-NS1 WNV-NY
Using the pSTBlue vector containing WNV NS1 as a
template, a second BstEII restriction enzyme site was in-
troduced at nucleotide 87 of the WNV NS1 gene (from
CATAGAC to GGTCACC) by site directed mutagenesis
using the following primers: forward: 5′- GACAC

Table 1 Primers for cloning NS1 from different flaviviruses

Primers Sequence (5′-3′)

WNV NS1 forward GTGGATGGGCGGCCGCACCATGGATAGGTCCATAGCTCTCACGTTT

WNV NS1 reverse CATTGACTGCGGCCGCTAAGCATTCACTTGTGACTGCAC

DENV NS1 forward GCGGCCGCACCATGGTCTCACTGTCTGTGACACTAG

DENV NS1 reverse TCAAGCTGTGACCAAGGAGTTGAC

YFV NS1 forward GCGGCCGCACCATGGACATGACAATGTCCATGAGCA

YFV NS1 reverse TCAAGCTGTAACCCAGGAGCGCACCAG

JEV NS1 forward GCGGCCGCACCATGGACCGATCAATTGCTTTGGCC

JEV NS1 reverse TCAAGCATGAACCTGTGATCTGACG

SLEV NS1 forward GCGGCCGCACCATGGACAGGAGCATCTCGCTGACTC

SLEV NS1 reverse TCAAGCTGTCACGCGAGATTTCACAAG
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TGGGTGTGCGGTCACCATCAGCCGGCTCTAG-3′,
reverse: 5′-CTAGAGCCGGCTGATGGTGACCGCAC
ACCCAGTGTC-3′. Subsequently, after BstEII enzyme di-
gestion and self-ligation, the 840 nucleotides of the NS1
gene (87 to 928) were removed although the reading
frame of the NS1 deletion fragment (Δ-NS1) remained in-
tact. This Δ-NS1 fragment was subcloned into the two-
plasmid system infectious cDNA clone of WNV-NY [40]
to generate pΔ-NS1-WNV. Using T7 DNA-dependent
RNA polymerase, pΔ-NS1-WNV was transcribed in vitro
and transfected into BHK21 or BHK21 VEEV-WNV-NS1
cells. Flow cytometric studies with Δ-NS1 failed to show
production of any residual truncated protein using anti-
NS1 MAbs that recognize different regions of the intact
protein.

Trans-complementation plaque and focus-forming assays
The ability of different flavivirus NS1 to trans-complement
ΔNS1-WNV was determined by serially diluting Δ-NS1-
WNV (produced in cells ectopically expressing WNV
NS1) and then infecting BHK21 cells propagating VEEV
replicons expressing WNV, JEV, SLEV, DENV-2, or YFV
NS1 for one hour at 37°C. Subsequently, DMEM contain-
ing final 4% FBS and 1% low melting agarose was overlaid
and incubated an additional 3 days for plaque forming
assay or DMEM containing final 4% FBS and 1% methyl-
cellulose was overlaid and incubated for one day for the
focus-forming assay. Plaques were stained with 1% crystal
violet after fixation with 10% formaldehyde and then
counted as described previously [42]. For the focus-
forming assay, cells were fixed with 1% paraformalde-
hyde for 20 minutes. After removal of the methylce-
llulose, cells were washed three times with PBS,
permeabilized with PBS supplemented with 1% saponin
(w/v) and 1% BSA (w/v), and incubated with mouse E16
anti-WNV MAb [43] for three hours at room temp-
erature or overnight at 4°C. Following three washes with
PBS, cells were incubated for one hour with horseradish
peroxidase-conjugated goat anti-mouse IgG (Sigma,
1/5,000 dilution), and after additional washes, foci were
visualized with TrueBlue peroxidase substrate (KPL)
and counted using a BioSpot Analyzer (C.T.L).

Western blotting
Supernatants from BHK21 VEEV-NS1-IS, BHK21
VEEV-WNV-NS1, or BHK21 VEEV NS1′ cells were sep-
arated by 12% PAGE, transferred to nitrocellulose mem-
brane using an iBlot dry blotting system (Invitrogen).
Membranes were blocked for one hour at room
temperature in 50 mM Tris, 150 mM NaCl, 0.05%
Tween 20 (TBST) supplemented with 5% non-fat dry
milk. Subsequently, WNV NS1 proteins were detected
using 16-NS1 MAb [44] (1 μg/ml) after incubating
membranes in TBST supplemented with 2.5% milk

overnight at 4°C or 3 hours at room temperature. After
extensive washes with TBST, membranes were incubated
with HRP-conjugated goat anti-mouse IgG (1/5,000 dilu-
tion, Sigma) for one hour at room temperature. Proteins
were detected using a chemiluminescent substrate
(Supersignal West Femto, Thermo Scientific) and expos-
ure to film (CL-X Posure TM Film, Thermo scientific).

Flow cytometry analysis
To assess total levels of cellular NS1, flow cytometry was
utilized. BHK21 cell lines propagating VEEV replicons
that expressed WNV NS1, WNV NS1-IS (non-coding),
DENV NS1, JEV NS1, SLEV NS1, or YFV NS1 were de-
tached with HBSS containing 5 mM EDTA. Cells were
washed twice with PBS on ice, fixed with 2% formalde-
hyde in PBS for seven minutes, and washed again with
HBSS. Cells were permeablized with 0.1% (w/v) saponin
and 0.1% BSA in HBSS (permeabilization buffer) and
then incubated with primary MAbs (WNV E16 as an
isotype control, 9NS1 as a cross-reactive anti-NS1 MAb
[44], 2G6 (DENV NS1-specific) [45], 4NS1 (WNV NS1-
specific) [44], 10NS1 (reacts with WNV and JEV NS1)
[44], and 4E3 (YFV NS1-specific) [46] for one hour on
ice. After three washes with permeabilization buffer, cells
were incubated with Alexa Fluor-647 conjugated goat
anti-mouse IgG (Molecular Probe) for 30 minutes and
then washed three additional times. Expression levels of
NS1 were determined by flow cytometry on a BD FAC-
SArray (Becton Dickinson) and data was processed with
FlowJo software (Tree Star, Inc).

Asymmetric positive and negative strand qRT-PCR
Strand-specific real-time RT-PCR was performed as de-
scribed using E gene primers [31,32]. Each transcript
reaction was treated with DNAse (Ambion) thrice
consecutively followed by RNA extraction with Trizol
(Invitrogen) according to the manufacturer’s instruction.
PCR was performed with and without reverse transcrip-
tion to confirm that RNA was free of template DNA. Wild
type BHK21 cells or BHK21 VEEV-WNV-NS1 cells (6 ×
105) were infected with WNV or Δ-NS1-WNV at an MOI
of 5. Total cellular RNA was harvested at specified time
points using the RNEasy mini kit (Qiagen) following the
manufacturer’s instructions, and viral RNA was quantified
using fluorogenic quantitative RT-PCR (qRT-PCR). Strand
specificity of the qRT-PCR was confirmed using individual
asymmetric primer sets and positive or negative strand
RNA that was generated from in vitro transcription reac-
tions after extensive DNAse treatment (data not shown).

Virus attachment assays
BHK21 cell monolayers were detached with HBSS and
5 mM EDTA, washed once with complete DMEM, and
washed three times with chilled PBS. Cells (106) were
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aliquotted into eppendorf tubes and 106 FFU of WNV
or Δ-NS1-WNV was added in total volume of 100 μl.
After binding for one hour, unbound virus was removed
by centrifugation (200 × g) and three washes with chilled
PBS. Bound virus was quantified after cell lysis and RNA
purification (RNEasy Kit, Qiagen) and quantification of
genomic RNA using qRT-PCR and a primer and probe
set specific for positive strand specific WNV RNA as de-
scribed above. Values were normalized to 18S rRNA
levels to account for possible differences in cell number.

Microscopic analysis of viral entry
BHK21 cells (6 × 105) were infected with an MOI of 5 of
WNV or Δ-NS1-WNV for one hour at 37°C. Unbound
virus was removed after three rinses with PBS and
complete DMEM was added for specified time points. Sub-
sequently, cells were rinsed with PBS, fixed with 3% para-
formaldehyde in PBS for 10 minutes, and permeabilized
with PBS supplemented with 0.5% Triton-X 100. After
additional washes with PBS and glycine (10 mM), cells
were incubated with WNV E16 MAb or a negative control
MAb (2G6, anti-DENV-2 NS1) for 20 minutes at room
temperature in DMEM containing 10% BSA. After three
washes with PBS and 10 mM glycine pH 7.4, cells were in-
cubated for 15 minutes with AlexaFluor 555-conugated
goat anti-mouse antibody (1/400 dilution), and nuclei were
counterstained with To-PRO 3 (Molecular Probes). After
several washes with PBS, cells were mounted on glass
slides, and images were acquired with a laser scanning con-
focal microscope (Zeiss LSM 510 META) and analyzed
with LSM image browser software (Zeiss).

Radiolabeling and immunoprecipitation
To compare the initial translation rates, 6 × 105 BHK21
cells or BHK21 VEEV-WNV-NS1 cells were infected at an
MOI of 5 of WNV or Δ-DNS1-WNV. At specific time
points after infection, cells were starved with methionine
free DMEM for 15 minutes, and then labeled for 20
minutes with 50 mCi/ml of 35S methionine and cysteine
(EasyTag™ EXPRES35S Protein Labeling Mix, PerkinElmer
Life Science). Labeled cells were solubilized in 800 μl of
Lysis buffer (50 mM Tris-HCl, pH 8.0, 150 mM NaCl, 1%
NP-40, 0.25% sodium deoxycholate, and 1 mM EDTA
supplemented with a protease inhibitor cocktail (Sigma))
for 10 minutes on ice. Nuclei were removed by centrifuga-
tion (13,800 × g) for five minutes at 4°C. Subsequently, ly-
sates were incubated with WNV E16 MAb (10 mg per
sample) for three hours at 4°C. WNV E protein-MAb
complexes were immunoprecipitated with protein A-
Sepharose beads (Invitrogen) after an additional one-hour
incubation at 4°C. Beads were washed three times with 10
mM Tris pH 7.4, 150 mM NaCl, 1% sodium deoxycholate,
and 1% NP-40 and proteins were eluted by boiling sam-
ples at 95°C for five minutes in 4X SDS sample buffer

supplemented with 5% (v/v) β-mercaptoethanol. Eluates
were separated by 12% SDS-PAGE, gels were vacuum-
dried on filter paper for one hour at 80°C, and proteins
were visualized after exposure to Kodak Biomax light film.

Expression and analysis of CMV-launched Δ-NS1-WNV-KUNV
Unique MluI restriction sites were generated within the
NS1 sequence in the full-length WNV expression vector
pKUN1 [35] at residues 4 and 298 (described in [38])
using site-directed mutagenesis. Briefly, pKUN1 was
amplified with Pfu Ultra Hot-start polymerase (Strata-
gene) and primers incorporating MluI sequences (listed
in Table 2) as follows: 92°C for 2 min then 18 cycles of
92°C for 30 s, 55°C for 1 min and 68°C for 21 min. Fol-
lowing restriction digestion and Sanger sequencing to
verify mutations, plasmids were cleaved with MluI to re-
move the majority of NS1-coding sequence, then re-
ligated and transformed into JM109 chemically-
competent E.coli cells. Δ-NS1 plasmids were amplified
and extracted using a Hi-Speed Plasmid Midiprep kit
(Qiagen). A mutation (NS5 GDD to GAA) that abolishes
RNA polymerase activity has been described previously
[38], and was made by site directed mutagenesis.
Vero or BHK21-VEEV-NS1 cells were transfected with

1 μg each of pKUN1, pKUN1-NS5-GAA or pKUN1-Δ-
NS1 cDNA using Lipofectamine 2000 (Life Technolo-
gies) as described by the manufacturer. Two days hours
after transfection, cells were fixed in either 1:1 acetone:
methanol or 4% v/v paraformeldehyde and perme-
abilized with 0.1% w/v Triton X-100. Cells were then in-
cubated with MAbs to dsRNA (English & Scientific
Consulting Bt. (Hungary)), NS1 and NS5 (kindly pro-
vided by R. Hall, University of Queensland) or rabbit
polyclonal antisera raised against NS3 [39] or NS4A
[47]. Confocal images were collected on a Zeiss confocal
microscope.

Data analysis
All data were analyzed statistically using Prism software
(GraphPad4, San Diego, CA). Differences in viral infec-
tion or RNA levels were analyzed using a two tailed, un-
paired t-test.

Table 2 Primers for cloning CMV-launched pKUN-Δ-NS1

Primer Sequence (5′ – 3′) (MluI)

NS1-Mlu1-A-
forward

GCTGATACTGGATGTACGCGTGATATAAGTCGGCAAG

NS1-Mlu1-A-reverse CTTGCCGACTTATATCACGCGTACATCCAGTATCAGC

NS1-Mlu1-B-
forward

CATCGTGGACCTGCCACGCGTACCACTACAGAGAG

NS1-Mlu1-B-reverse CTCTCTGTAGTGGTACGCGTGGCAGGTCCACGATG
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