14 research outputs found

    LRRK2 inhibition by BIIB122 in healthy participants and patients with Parkinson's disease

    Get PDF
    Background: Leucine-rich repeat kinase 2 (LRRK2) inhibition is a promising therapeutic approach for the treatment of Parkinson's disease (PD).Objective: The aim of this study was to evaluate the safety, tolerability, pharmacokinetics, and pharmacodynamics of the potent, selective, CNS-penetrant LRRK2 inhibitor BIIB122 (DNL151) in healthy participants and patients with PD.Methods: Two randomized, double-blind, placebo-controlled studies were completed. The phase 1 study (DNLI-C-0001) evaluated single and multiple doses of BIIB122 for up to 28 days in healthy participants. The phase 1b study (DNLI-C-0003) evaluated BIIB122 for 28 days in patients with mild to moderate PD. The primary objectives were to investigate the safety, tolerability, and plasma pharmacokinetics of BIIB122. Pharmacodynamic outcomes included peripheral and central target inhibition and lysosomal pathway engagement biomarkers.Results: A total of 186/184 healthy participants (146/145 BIIB122, 40/39 placebo) and 36/36 patients (26/26 BIIB122, 10/10 placebo) were randomized/treated in the phase 1 and phase 1b studies, respectively. In both studies, BIIB122 was generally well tolerated; no serious adverse events were reported, and the majority of treatment-emergent adverse events were mild. BIIB122 cerebrospinal fluid/unbound plasma concentration ratio was similar to 1 (range, 0.7-1.8). Dose-dependent median reductions from baseline were observed in whole-blood phosphorylated serine 935 LRRK2 (<= 98%), peripheral blood mononuclear cell phosphorylated threonine 73 pRab10 (<= 93%), cerebrospinal fluid total LRRK2 (<= 50%), and urine bis (monoacylglycerol) phosphate (<= 74%).Conclusions: At generally safe and well-tolerated doses, BIIB122 achieved substantial peripheral LRRK2 kinase inhibition and modulation of lysosomal pathways downstream of LRRK2, with evidence of CNS distribution and target inhibition. These studies support continued investigation of LRRK2 inhibition with BIIB122 for the treatment of PD. (c) 2023 Denali Therapeutics Inc and The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.</p

    Occurrence of ESBL-Producing Escherichia coli ST131, Including the H30-Rx and C1-M27 Subclones, Among Urban Seagulls from the United Kingdom

    No full text
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Antimicrobial resistance is a public health concern. Understanding any role that urban seagulls may have as a reservoir of resistant bacteria could be important for reducing transmission. This study investigated fecal Escherichia coli isolates from seagulls (herring gulls and lesser black-backed gulls) to determine the prevalence of extended-spectrum cephalosporin-resistant (ESC-R) and fluoroquinolone-resistant E. coli among gull species from two cities (Taunton and Birmingham) in the United Kingdom (UK). We characterized the genetic background and carriage of plasmid-mediated resistance genes in extended-spectrum β-lactamase (ESBL)-producing E. coli obtained from these birds. Sixty ESC-R E. coli isolates were obtained from 39 seagulls (39/78, 50%), of which 28 (28/60, 46.7%) were positive for plasmid-mediated CTX-M and/or AmpC β-lactamase resistance genes. Among these, blaCTX-M-15, blaCTX-M-14, and blaCMY-2 predominated. Three isolates belonging to the B2-ST131 clone were detected, of which two harbored blaCTX-M-15 (typed to C2/H30Rx) and one harbored blaCTX-M-27 and was typed to C1/H30-R (recently described as the C1-M27 sublineage). The plasmid-mediated quinolone resistance (PMQR) gene carriage prevalence (11.7%) consisted of aac(6′)-Ib-cr and qnrB genes. No carbapenem or colistin resistance genes were detected. Urban seagulls in the UK are colonized and can spread major antimicrobial-resistant E. coli isolates harboring ESBL and PMQR determinants, including clinically important strains such as the pandemic clone B2-ST131 and the C1-M27 subclade. This is the first report of ST131-C1-M27 subclade in wildlife in the UK and in seagulls worldwide
    corecore