230 research outputs found

    A high-resolution hydrodynamic-biogeochemical coupled model of the Gulf of Cadiz – Alboran Sea region.

    Get PDF
    The southern Iberia regional seas comprise the Gulf of Cadiz and the Alboran Sea sub-basins connected by the narrow Strait of Gibraltar. Both basins are very different in their hydrological and biological characteristics but are, also, tightly connected to each other. Integrative studies of the whole regional oceanic system are scarce and difficult to perform due to the relative large area to cover and the different relevant time-scales of the main forcings in each sub-basin. Here we propose, for the first time, a fully coupled, 3D, hydrodynamic-biogeochemical model that covers, in a single domain (~2km resolution) both marine basins for a 20 years simulation (1989-2008). Model performance is assessed against available data in terms of spatial and temporal distributions of biological variables. In general, the proposed model is able to represent the climatological distributions of primary and secondary producers and also the main seasonality of primary production in the different sub-regions of the analyzed basins. Potential causes of the observed mismatches between model and data are identified and some solutions are proposed for future model development. We conclude that most of these mismatches could be attributed to the missing tidal forcing in the actual model configuration. This model is a first step to obtain a meaningful tool to study past and future oceanographic conditions in this important marine region constituting the unique connection of the Mediterranean Sea with the open world’s ocean

    Altered DNA methylation in human placenta after (suspected) preterm labor

    Get PDF
    Aim: The aim of this study was to determine if alterations in DNA methylation in the human placenta would support suspected preterm labor as a pathologic insult associated with diminished placental health. Methods: We evaluated placental DNA methylation at seven loci differentially methylated in placental pathologies using targeted bisulfite sequencing, in placentas associated with preterm labor (term birth after suspected preterm labor [n = 15] and preterm birth [n = 15]), and controls (n = 15). Results: DNA methylation levels at the NCAM1 and PLAGL1 loci in placentas associated with preterm labor did differ significantly (p < 0.05) from controls. Discussion: Specific alterations in methylation patterns indicative of an unfavourable placental environment are associated with preterm labor per se and not restricted to preterm birth

    Magnesium in Kidney Function and Disease—Implications for Aging and Sex—A Narrative Review

    Get PDF
    Magnesium (Mg) has a vital role in the human body, and the kidney is a key organ in the metabolism and excretion of this cation. The objective of this work is to compile the available evidence regarding the role that Mg plays in health and disease, with a special focus on the elderly population with chronic kidney disease (CKD) and the eventual sex differences. A narrative review was carried out by executing an exhaustive search in the PubMed, Scopus, and Cochrane databases. Ten studies were found in which the role of Mg and sex was evaluated in elderly patients with CKD in the last 10 years (2012–2022). The progression of CKD leads to alterations in mineral metabolism, which worsen as the disease progresses. Mg can be used as a coadjuvant in the treatment of CKD patients to improve glomerular filtration, but its use in clinical applications needs to be further characterized. In conclusion, there’s a need for well-designed prospective clinical trials to advise and standardize Mg supplementation in daily clinical practice, taking age and sex into consideration

    Characterizing the target selection pipeline for the Dark Energy Spectroscopic Instrument Bright Galaxy Survey

    Get PDF
    We present the steps taken to produce a reliable and complete input galaxy catalogue for the Dark Energy Spectroscopic Instrument (DESI) Bright Galaxy Survey (BGS) using the photometric Legacy Survey DR8 DECam. We analyse some of the main issues faced in the selection of targets for the DESI BGS, such as star–galaxy separation, contamination by fragmented stars and bright galaxies. Our pipeline utilizes a new way to select BGS galaxies using Gaia photometry and we implement geometrical and photometric masks that reduce the number of spurious objects. The resulting catalogue is cross-matched with the Galaxy And Mass Assembly (GAMA) survey to assess the completeness of the galaxy catalogue and the performance of the target selection. We also validate the clustering of the sources in our BGS catalogue by comparing with mock catalogues and the Sloan Digital Sky Survey (SDSS) data. Finally, the robustness of the BGS selection criteria is assessed by quantifying the dependence of the target galaxy density on imaging and other properties. The largest systematic correlation we find is a 7 per cent suppression of the target density in regions of high stellar density

    Performance of the inFLUenza Patient-Reported Outcome (FLU-PRO) diary in patients with influenza-like illness (ILI)

    Get PDF
    BACKGROUND: The inFLUenza Patient Reported Outcome (FLU-PRO) measure is a daily diary assessing signs/symptoms of influenza across six body systems: Nose, Throat, Eyes, Chest/Respiratory, Gastrointestinal, Body/Systemic, developed and tested in adults with influenza. OBJECTIVES: This study tested the reliability, validity, and responsiveness of FLU-PRO scores in adults with influenza-like illness (ILI). METHODS: Data from the prospective, observational study used to develop and test the FLU-PRO in influenza virus positive patients were analyzed. Adults (≥18 years) presenting with influenza symptoms in outpatient settings in the US, UK, Mexico, and South America were enrolled, tested for influenza virus, and asked to complete the 37-item draft FLU-PRO daily for up to 14-days. Analyses were performed on data from patients testing negative. Reliability of the final, 32-item FLU-PRO was estimated using Cronbach's alpha (α; Day 1) and intraclass correlation coefficients (ICC; 2-day reproducibility). Convergent and known-groups validity were assessed using patient global assessments of influenza severity (PGA). Patient report of return to usual health was used to assess responsiveness (Day 1-7). RESULTS: The analytical sample included 220 ILI patients (mean age = 39.3, 64.1% female, 88.6% white). Sixty-one (28%) were hospitalized at some point in their illness. Internal consistency reliability (α) of FLU-PRO Total score was 0.90 and ranged from 0.72-0.86 for domain scores. Reproducibility (Day 1-2) was 0.64 for Total, ranging from 0.46-0.78 for domain scores. Day 1 FLU-PRO scores correlated (≥0.30) with the PGA (except Gastrointestinal) and were significantly different across PGA severity groups (Total: F = 81.7, p<0.001; subscales: F = 6.9-62.2; p<0.01). Mean score improvements Day 1-7 were significantly greater in patients reporting return to usual health compared with those who did not (p<0.05, Total and subscales, except Gastrointestinal and Eyes). CONCLUSIONS: Results suggest FLU-PRO scores are reliable, valid, and responsive in adults with influenza-like illness

    Multi-Messenger Astronomy with Extremely Large Telescopes

    Get PDF
    The field of time-domain astrophysics has entered the era of Multi-messenger Astronomy (MMA). One key science goal for the next decade (and beyond) will be to characterize gravitational wave (GW) and neutrino sources using the next generation of Extremely Large Telescopes (ELTs). These studies will have a broad impact across astrophysics, informing our knowledge of the production and enrichment history of the heaviest chemical elements, constrain the dense matter equation of state, provide independent constraints on cosmology, increase our understanding of particle acceleration in shocks and jets, and study the lives of black holes in the universe. Future GW detectors will greatly improve their sensitivity during the coming decade, as will near-infrared telescopes capable of independently finding kilonovae from neutron star mergers. However, the electromagnetic counterparts to high-frequency (LIGO/Virgo band) GW sources will be distant and faint and thus demand ELT capabilities for characterization. ELTs will be important and necessary contributors to an advanced and complete multi-messenger network.Comment: White paper submitted to the Astro2020 Decadal Surve

    Genome-wide association analysis of dementia and its clinical endophenotypes reveal novel loci associated with Alzheimer's disease and three causality networks: The GR@ACE project

    Get PDF
    INTRODUCTION: Large variability among Alzheimer's disease (AD) cases might impact genetic discoveries and complicate dissection of underlying biological pathways. METHODS: Genome Research at Fundacio ACE (GR@ACE) is a genome-wide study of dementia and its clinical endophenotypes, defined based on AD's clinical certainty and vascular burden. We assessed the impact of known AD loci across endophenotypes to generate loci categories. We incorporated gene coexpression data and conducted pathway analysis per category. Finally, to evaluate the effect of heterogeneity in genetic studies, GR@ACE series were meta-analyzed with additional genome-wide association study data sets. RESULTS: We classified known AD loci into three categories, which might reflect the disease clinical heterogeneity. Vascular processes were only detected as a causal mechanism in probable AD. The meta-analysis strategy revealed the ANKRD31-rs4704171 and NDUFAF6-rs10098778 and confirmed SCIMP-rs7225151 and CD33-rs3865444. DISCUSSION: The regulation of vasculature is a prominent causal component of probable AD. GR@ACE meta-analysis revealed novel AD genetic signals, strongly driven by the presence of clinical heterogeneity in the AD series

    Mitochondria function associated genes contribute to Parkinson's Disease risk and later age at onset

    Get PDF
    Mitochondrial dysfunction has been implicated in the etiology of monogenic Parkinson’s disease (PD). Yet the role that mitochondrial processes play in the most common form of the disease; sporadic PD, is yet to be fully established. Here, we comprehensively assessed the role of mitochondrial function-associated genes in sporadic PD by leveraging improvements in the scale and analysis of PD GWAS data with recent advances in our understanding of the genetics of mitochondrial disease. We calculated a mitochondrial-specific polygenic risk score (PRS) and showed that cumulative small effect variants within both our primary and secondary gene lists are significantly associated with increased PD risk. We further reported that the PRS of the secondary mitochondrial gene list was significantly associated with later age at onset. Finally, to identify possible functional genomic associations we implemented Mendelian randomization, which showed that 14 of these mitochondrial functionassociated genes showed functional consequence associated with PD risk. Further analysis suggested that the 14 identified genes are not only involved in mitophagy, but implicate new mitochondrial processes. Our data suggests that therapeutics targeting mitochondrial bioenergetics and proteostasis pathways distinct from mitophagy could be beneficial to treating the early stage of PD

    Identification of Candidate Parkinson Disease Genes by Integrating Genome-Wide Association Study, Expression, and Epigenetic Data Sets

    Get PDF
    Importance Substantial genome-wide association study (GWAS) work in Parkinson disease (PD) has led to the discovery of an increasing number of loci shown reliably to be associated with increased risk of disease. Improved understanding of the underlying genes and mechanisms at these loci will be key to understanding the pathogenesis of PD. / Objective To investigate what genes and genomic processes underlie the risk of sporadic PD. / Design and Setting This genetic association study used the bioinformatic tools Coloc and transcriptome-wide association study (TWAS) to integrate PD case-control GWAS data published in 2017 with expression data (from Braineac, the Genotype-Tissue Expression [GTEx], and CommonMind) and methylation data (derived from UK Parkinson brain samples) to uncover putative gene expression and splicing mechanisms associated with PD GWAS signals. Candidate genes were further characterized using cell-type specificity, weighted gene coexpression networks, and weighted protein-protein interaction networks. / Main Outcomes and Measures It was hypothesized a priori that some genes underlying PD loci would alter PD risk through changes to expression, splicing, or methylation. Candidate genes are presented whose change in expression, splicing, or methylation are associated with risk of PD as well as the functional pathways and cell types in which these genes have an important role. / Results Gene-level analysis of expression revealed 5 genes (WDR6 [OMIM 606031], CD38 [OMIM 107270], GPNMB [OMIM 604368], RAB29 [OMIM 603949], and TMEM163 [OMIM 618978]) that replicated using both Coloc and TWAS analyses in both the GTEx and Braineac expression data sets. A further 6 genes (ZRANB3 [OMIM 615655], PCGF3 [OMIM 617543], NEK1 [OMIM 604588], NUPL2 [NCBI 11097], GALC [OMIM 606890], and CTSB [OMIM 116810]) showed evidence of disease-associated splicing effects. Cell-type specificity analysis revealed that gene expression was overall more prevalent in glial cell types compared with neurons. The weighted gene coexpression performed on the GTEx data set showed that NUPL2 is a key gene in 3 modules implicated in catabolic processes associated with protein ubiquitination and in the ubiquitin-dependent protein catabolic process in the nucleus accumbens, caudate, and putamen. TMEM163 and ZRANB3 were both important in modules in the frontal cortex and caudate, respectively, indicating regulation of signaling and cell communication. Protein interactor analysis and simulations using random networks demonstrated that the candidate genes interact significantly more with known mendelian PD and parkinsonism proteins than would be expected by chance. / Conclusions and Relevance Together, these results suggest that several candidate genes and pathways are associated with the findings observed in PD GWAS studies

    Identification of sixteen novel candidate genes for late onset Parkinson’s disease

    Get PDF
    Background Parkinson’s disease (PD) is a neurodegenerative movement disorder affecting 1–5% of the general population for which neither effective cure nor early diagnostic tools are available that could tackle the pathology in the early phase. Here we report a multi-stage procedure to identify candidate genes likely involved in the etiopathogenesis of PD. Methods The study includes a discovery stage based on the analysis of whole exome data from 26 dominant late onset PD families, a validation analysis performed on 1542 independent PD patients and 706 controls from different cohorts and the assessment of polygenic variants load in the Italian cohort (394 unrelated patients and 203 controls). Results Family-based approach identified 28 disrupting variants in 26 candidate genes for PD including PARK2, PINK1, DJ-1(PARK7), LRRK2, HTRA2, FBXO7, EIF4G1, DNAJC6, DNAJC13, SNCAIP, AIMP2, CHMP1A, GIPC1, HMOX2, HSPA8, IMMT, KIF21B, KIF24, MAN2C1, RHOT2, SLC25A39, SPTBN1, TMEM175, TOMM22, TVP23A and ZSCAN21. Sixteen of them have not been associated to PD before, were expressed in mesencephalon and were involved in pathways potentially deregulated in PD. Mutation analysis in independent cohorts disclosed a significant excess of highly deleterious variants in cases (p = 0.0001), supporting their role in PD. Moreover, we demonstrated that the co-inheritance of multiple rare variants (≥ 2) in the 26 genes may predict PD occurrence in about 20% of patients, both familial and sporadic cases, with high specificity (> 93%; p = 4.4 × 10− 5). Moreover, our data highlight the fact that the genetic landmarks of late onset PD does not systematically differ between sporadic and familial forms, especially in the case of small nuclear families and underline the importance of rare variants in the genetics of sporadic PD. Furthermore, patients carrying multiple rare variants showed higher risk of manifesting dyskinesia induced by levodopa treatment. Conclusions Besides confirming the extreme genetic heterogeneity of PD, these data provide novel insights into the genetic of the disease and may be relevant for its prediction, diagnosis and treatment
    • …
    corecore