99 research outputs found

    Heterotrimeric G-protein Signaling Is Critical to Pathogenic Processes in Entamoeba histolytica

    Get PDF
    Heterotrimeric G-protein signaling pathways are vital components of physiology, and many are amenable to pharmacologic manipulation. Here, we identify functional heterotrimeric G-protein subunits in Entamoeba histolytica, the causative agent of amoebic colitis. The E. histolytica Gα subunit EhGα1 exhibits conventional nucleotide cycling properties and is seen to interact with EhGβγ dimers and a candidate effector, EhRGS-RhoGEF, in typical, nucleotide-state-selective fashions. In contrast, a crystal structure of EhGα1 highlights unique features and classification outside of conventional mammalian Gα subfamilies. E. histolytica trophozoites overexpressing wildtype EhGα1 in an inducible manner exhibit an enhanced ability to kill host cells that may be wholly or partially due to enhanced host cell attachment. EhGα1-overexpressing trophozoites also display enhanced transmigration across a Matrigel barrier, an effect that may result from altered baseline migration. Inducible expression of a dominant negative EhGα1 variant engenders the converse phenotypes. Transcriptomic studies reveal that modulation of pathogenesis-related trophozoite behaviors by perturbed heterotrimeric G-protein expression includes transcriptional regulation of virulence factors and altered trafficking of cysteine proteases. Collectively, our studies suggest that E. histolytica possesses a divergent heterotrimeric G-protein signaling axis that modulates key aspects of cellular processes related to the pathogenesis of this infectious organism

    Impact of calcium on salivary α-amylase activity, starch paste apparent viscosity and thickness perception

    Get PDF
    Thickness perception of starch-thickened products during eating has been linked to starch viscosity and salivary amylase activity. Calcium is an essential cofactor for α-amylase and there is anecdotal evidence that adding extra calcium affects amylase activity in processes like mashing of beer. The aims of this paper were to (1) investigate the role of salivary calcium on α-amylase activity and (2) to measure the effect of calcium concentration on apparent viscosity and thickness perception when interacting with salivary α-amylase in starch-based samples. α-Amylase activity in saliva samples from 28 people was assessed using a typical starch pasting cycle (up to 95 °C). The activity of the enzyme (as measured by the change in starch apparent viscosity) was maintained by the presence of calcium, probably by protecting the enzyme from heat denaturation. Enhancement of α-amylase activity by calcium at 37 °C was also observed although to a smaller extent. Sensory analysis showed a general trend of decreased thickness perception in the presence of calcium, but the result was only significant for one pair of samples, suggesting a limited impact of calcium enhanced enzyme activity on perceived thickness

    The Crystal Structure of a Self-Activating G Protein   Subunit Reveals Its Distinct Mechanism of Signal Initiation

    Get PDF
    In animals, heterotrimeric guanine nucleotide–binding protein (G protein) signaling is initiated by G protein–coupled receptors (GPCRs), which activate G protein α subunits; however, the plant Arabidopsis thaliana lacks canonical GPCRs, and its G protein α subunit (AtGPA1) is self-activating. To investigate how AtGPA1 becomes activated, we determined its crystal structure. AtGPA1 is structurally similar to animal G protein α subunits, but our crystallographic and biophysical studies revealed that it had distinct properties. Notably, the helical domain of AtGPA1 displayed pronounced intrinsic disorder and a tendency to disengage from the Ras domain of the protein. Domain substitution experiments showed that the helical domain of AtGPA1 was necessary for self-activation and sufficient to confer self-activation to an animal G protein α subunit. These findings reveal the structural basis for a mechanism for G protein activation in Arabidopsis that is distinct from the well-established mechanism found in animals

    Real-time single-molecule imaging reveals a direct interaction between UvrC and UvrB on DNA tightropes

    Get PDF
    Nucleotide excision DNA repair is mechanistically conserved across all kingdoms of life. In prokaryotes, this multi-enzyme process requires six proteins: UvrA?D, DNA polymerase I and DNA ligase. To examine how UvrC locates the UvrB? DNA pre-incision complex at a site of damage, we have labeled UvrB and UvrC with different colored quantum dots and quantitatively observed their interactions with DNA tightropes under a variety of solution conditions using oblique angle fluorescence imaging. Alone, UvrC predominantly interacts statically with DNA at low salt. Surprisingly, however, UvrC and UvrB together in solution bind to form the previously unseen UvrBC complex on duplex DNA. This UvrBC complex is highly motile and engages in unbiased one-dimensional diffusion. To test whether UvrB makes direct contact with the DNA in the UvrBC?DNA complex, we investigated three UvrB mutants: Y96A, a b-hairpin deletion and D338N. These mutants affected the motile properties of the UvrBC complex, indicating that UvrB is in intimate contact with the DNA when bound to UvrC. Given the in vivo excess of UvrB and the abundance of UvrBC in our experiments, this newly identified complex is likely to be the predominant form of UvrC in the cell. © 2013 The Author(s)

    Thermal Stabilization of an Endoglucanase by Cyclization

    Get PDF
    An intein-driven protein splicing approach allowed for the covalent linkage between the N- and C-termini of a polypeptide chain to create circular variants of the endo-β-1,3-1,4-glucanase, LicA, from Bacillus licheniformis. Two circular variants, LicA-C1 and LicA-C2, which have connecting loops of 20 and 14 amino acids, respectively, showed catalytic activities that are approximately two and three times higher, respectively, compared to that of the linear LicA (LicA-L1). The thermal stability of the circular variants was significantly increased compared to the linear form. Whereas the linear glucanase lost half of its activity after 3 min at 65 °C, the two circular variants have 6-fold (LicA-C1) and 16-fold (LicA-C2) increased half-life time of inactivation. In agreement with this, fluorescence spectroscopy and differential scanning calorimetry studies revealed that circular enzymes undergo structural changes at higher temperatures compared to that of the linear form. The effect of calcium on the conformational stability and function of the circular LicAs was also investigated, and we observed that the presence of calcium ions results in increased thermal stability. The impact of the length of the designed loops on thermal stability of the circular proteins is discussed, and it is suggested that cyclization may be an efficient strategy for the increased stability of proteins

    TCRep 3D: An Automated In Silico Approach to Study the Structural Properties of TCR Repertoires

    Get PDF
    TCRep 3D is an automated systematic approach for TCR-peptide-MHC class I structure prediction, based on homology and ab initio modeling. It has been considerably generalized from former studies to be applicable to large repertoires of TCR. First, the location of the complementary determining regions of the target sequences are automatically identified by a sequence alignment strategy against a database of TCR Vα and Vβ chains. A structure-based alignment ensures automated identification of CDR3 loops. The CDR are then modeled in the environment of the complex, in an ab initio approach based on a simulated annealing protocol. During this step, dihedral restraints are applied to drive the CDR1 and CDR2 loops towards their canonical conformations, described by Al-Lazikani et. al. We developed a new automated algorithm that determines additional restraints to iteratively converge towards TCR conformations making frequent hydrogen bonds with the pMHC. We demonstrated that our approach outperforms popular scoring methods (Anolea, Dope and Modeller) in predicting relevant CDR conformations. Finally, this modeling approach has been successfully applied to experimentally determined sequences of TCR that recognize the NY-ESO-1 cancer testis antigen. This analysis revealed a mechanism of selection of TCR through the presence of a single conserved amino acid in all CDR3β sequences. The important structural modifications predicted in silico and the associated dramatic loss of experimental binding affinity upon mutation of this amino acid show the good correspondence between the predicted structures and their biological activities. To our knowledge, this is the first systematic approach that was developed for large TCR repertoire structural modeling

    The Critical Role of N- and C-Terminal Contact in Protein Stability and Folding of a Family 10 Xylanase under Extreme Conditions

    Get PDF
    Stabilization strategies adopted by proteins under extreme conditions are very complex and involve various kinds of interactions. Recent studies have shown that a large proportion of proteins have their N- and C-terminal elements in close contact and suggested they play a role in protein folding and stability. However, the biological significance of this contact remains elusive.In the present study, we investigate the role of N- and C-terminal residue interaction using a family 10 xylanase (BSX) with a TIM-barrel structure that shows stability under high temperature, alkali pH, and protease and SDS treatment. Based on crystal structure, an aromatic cluster was identified that involves Phe4, Trp6 and Tyr343 holding the N- and C-terminus together; this is a unique and important feature of this protein that might be crucial for folding and stability under poly-extreme conditions. folding and activity. Alanine substitution with Phe4, Trp6 and Tyr343 drastically decreased stability under all parameters studied. Importantly, substitution of Phe4 with Trp increased stability in SDS treatment. Mass spectrometry results of limited proteolysis further demonstrated that the Arg344 residue is highly susceptible to trypsin digestion in sensitive mutants such as ΔF4, W6A and Y343A, suggesting again that disruption of the Phe4-Trp6-Tyr343 (F-W-Y) cluster destabilizes the N- and C-terminal interaction. Our results underscore the importance of N- and C-terminal contact through aromatic interactions in protein folding and stability under extreme conditions, and these results may be useful to improve the stability of other proteins under suboptimal conditions

    Crystal Structure of the Formin mDia1 in Autoinhibited Conformation

    Get PDF
    Formin proteins utilize a conserved formin homology 2 (FH2) domain to nucleate new actin filaments. In mammalian diaphanous-related formins (DRFs) the FH2 domain is inhibited through an unknown mechanism by intramolecular binding of the diaphanous autoinhibitory domain (DAD) and the diaphanous inhibitory domain (DID).Here we report the crystal structure of a complex between DID and FH2-DAD fragments of the mammalian DRF, mDia1 (mammalian diaphanous 1 also called Drf1 or p140mDia). The structure shows a tetrameric configuration (4 FH2 + 4 DID) in which the actin-binding sites on the FH2 domain are sterically occluded. However biochemical data suggest the full-length mDia1 is a dimer in solution (2 FH2 + 2 DID). Based on the crystal structure, we have generated possible dimer models and found that architectures of all of these models are incompatible with binding to actin filament but not to actin monomer. Furthermore, we show that the minimal functional monomeric unit in the FH2 domain, termed the bridge element, can be inhibited by isolated monomeric DID. NMR data on the bridge-DID system revealed that at least one of the two actin-binding sites on the bridge element is accessible to actin monomer in the inhibited state.Our findings suggest that autoinhibition in the native DRF dimer involves steric hindrance with the actin filament. Although the structure of a full-length DRF would be required for clarification of the presented models, our work here provides the first structural insights into the mechanism of the DRF autoinhibition

    Long Lamai community ICT4D E‐commerce system modelling: an agent oriented role‐based approach

    Get PDF
    This paper presents the post‐mortem report upon completion of the Long Lamai e‐commerce development project. Some weaknesses with regards to the current software modelling approach are identified and an alternative role‐based approach is proposed. We argue that the existing software modelling technique is not suitable for modelling, making it difficult to establish a good contract between stakeholders causing delays in the project delivery. The role‐based approach is able to explicitly highlight the responsibilities among stakeholders, while also forming the contract agreement among them leading towards sustainable ICT4D
    corecore