136 research outputs found

    Additivity of elementary maps on gamma rings

    Get PDF
    Let M and M' be Gamma rings, respectively. We study the additivity of surjective elementary maps of M ⨉ M'. We prove that if M contains a non-trivial γ-idempotent satisfying some conditions, then they are additive.peerReviewe

    Laser modulated optical reflectance of thin semiconductor films on glass

    Get PDF
    Semiconductor films, deposited by reactive magnetron sputtering on glass substrates have been analyzed with the help of laser-modulated optical reflectance. The results are discussed with respect to the thermal and charge carrier transport properties. Semiconductor properties have been identified both for micro-crystalline and amorphous film

    Flow cytometry immunophenotyping for diagnostic orientation and classification of pediatric cancer based on the EuroFlow Solid Tumor Orientation Tube (STOT)

    Get PDF
    Early diagnosis of pediatric cancer is key for adequate patient management and improved outcome. Although multiparameter flow cytometry (MFC) has proven of great utility in the diagnosis and classification of hematologic malignancies, its application to non-hematopoietic pediatric tumors remains limited. Here we designed and prospectively validated a new single eight-color antibody combination-solid tumor orientation tube, STOT-for diagnostic screening of pediatric cancer by MFC. A total of 476 samples (139 tumor mass, 138 bone marrow, 86 lymph node, 58 peripheral blood, and 55 other body fluid samples) from 296 patients with diagnostic suspicion of pediatric cancer were analyzed by MFC vs. conventional diagnostic procedures. STOT was designed after several design-test-evaluate-redesign cycles based on a large panel of monoclonal antibody combinations tested on 301 samples. In its final version, STOT consists of a single 8-color/12-marker antibody combination (CD99-CD8/(nu)myogenin/CD4-EpCAM/CD56/GD2/(sm)CD3-CD19/(cy)CD3-CD271/CD45). Prospective validation of STOT in 149 samples showed concordant results with the patient WHO/ICCC-3 diagnosis in 138/149 cases (92.6%). These included: 63/63 (100%) reactive/disease-free samples, 43/44 (98%) malignant and 4/4 (100%) benign non-hematopoietic tumors together with 28/38 (74%) leukemia/lymphoma cases; the only exception was Hodgkin lymphoma that required additional markers to be stained.& nbsp;In addition, STOT allowed accurate discrimination among the four most common subtypes of malignant CD45(-) CD56(++) non-hematopoietic solid tumors: 13/13 (GD2(++) (nu)myogenin(-) CD271(-/+) (nu)MyoD1(-) CD99(-) EpCAM(-)) neuroblastoma samples, 5/5 (GD2(-) (nu)myogenin(++) CD271(++) (nu)MyoD1(++) CD99(-/+) EpCAM(-)) rhabdomyosarcomas, 2/2 (GD2(-/+) (nu)myogenin(-) CD271(+) (nu)MyoD1(-) CD99(+) EpCAM(-)) Ewing sarcoma family of tumors, and 7/7 (GD2(-) (nu)myogenin(-) CD271(+) (nu)MyoD1(-) CD99(-) EpCAM(+)) Wilms tumors. In summary, here we designed and validated a new standardized antibody combination and MFC assay for diagnostic screening of pediatric solid tumors that might contribute to fast and accurate diagnostic orientation and classification of pediatric cancer in routine clinical practice.Stemcel biology/Regenerative medicine (incl. bloodtransfusion

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Rationale, study design, and analysis plan of the Alveolar Recruitment for ARDS Trial (ART): Study protocol for a randomized controlled trial

    Get PDF
    Background: Acute respiratory distress syndrome (ARDS) is associated with high in-hospital mortality. Alveolar recruitment followed by ventilation at optimal titrated PEEP may reduce ventilator-induced lung injury and improve oxygenation in patients with ARDS, but the effects on mortality and other clinical outcomes remain unknown. This article reports the rationale, study design, and analysis plan of the Alveolar Recruitment for ARDS Trial (ART). Methods/Design: ART is a pragmatic, multicenter, randomized (concealed), controlled trial, which aims to determine if maximum stepwise alveolar recruitment associated with PEEP titration is able to increase 28-day survival in patients with ARDS compared to conventional treatment (ARDSNet strategy). We will enroll adult patients with ARDS of less than 72 h duration. The intervention group will receive an alveolar recruitment maneuver, with stepwise increases of PEEP achieving 45 cmH(2)O and peak pressure of 60 cmH2O, followed by ventilation with optimal PEEP titrated according to the static compliance of the respiratory system. In the control group, mechanical ventilation will follow a conventional protocol (ARDSNet). In both groups, we will use controlled volume mode with low tidal volumes (4 to 6 mL/kg of predicted body weight) and targeting plateau pressure <= 30 cmH2O. The primary outcome is 28-day survival, and the secondary outcomes are: length of ICU stay; length of hospital stay; pneumothorax requiring chest tube during first 7 days; barotrauma during first 7 days; mechanical ventilation-free days from days 1 to 28; ICU, in-hospital, and 6-month survival. ART is an event-guided trial planned to last until 520 events (deaths within 28 days) are observed. These events allow detection of a hazard ratio of 0.75, with 90% power and two-tailed type I error of 5%. All analysis will follow the intention-to-treat principle. Discussion: If the ART strategy with maximum recruitment and PEEP titration improves 28-day survival, this will represent a notable advance to the care of ARDS patients. Conversely, if the ART strategy is similar or inferior to the current evidence-based strategy (ARDSNet), this should also change current practice as many institutions routinely employ recruitment maneuvers and set PEEP levels according to some titration method.Hospital do Coracao (HCor) as part of the Program 'Hospitais de Excelencia a Servico do SUS (PROADI-SUS)'Brazilian Ministry of Healt

    Diretriz sobre Diagnóstico e Tratamento da Cardiomiopatia Hipertrófica – 2024

    Get PDF
    Hypertrophic cardiomyopathy (HCM) is a form of genetically caused heart muscle disease, characterized by the thickening of the ventricular walls. Diagnosis requires detection through imaging methods (Echocardiogram or Cardiac Magnetic Resonance) showing any segment of the left ventricular wall with a thickness > 15 mm, without any other probable cause. Genetic analysis allows the identification of mutations in genes encoding different structures of the sarcomere responsible for the development of HCM in about 60% of cases, enabling screening of family members and genetic counseling, as an important part of patient and family management. Several concepts about HCM have recently been reviewed, including its prevalence of 1 in 250 individuals, hence not a rare but rather underdiagnosed disease. The vast majority of patients are asymptomatic. In symptomatic cases, obstruction of the left ventricular outflow tract (LVOT) is the primary disorder responsible for symptoms, and its presence should be investigated in all cases. In those where resting echocardiogram or Valsalva maneuver does not detect significant intraventricular gradient (> 30 mmHg), they should undergo stress echocardiography to detect LVOT obstruction. Patients with limiting symptoms and severe LVOT obstruction, refractory to beta-blockers and verapamil, should receive septal reduction therapies or use new drugs inhibiting cardiac myosin. Finally, appropriately identified patients at increased risk of sudden death may receive prophylactic measure with implantable cardioverter-defibrillator (ICD) implantation.La miocardiopatía hipertrófica (MCH) es una forma de enfermedad cardíaca de origen genético, caracterizada por el engrosamiento de las paredes ventriculares. El diagnóstico requiere la detección mediante métodos de imagen (Ecocardiograma o Resonancia Magnética Cardíaca) que muestren algún segmento de la pared ventricular izquierda con un grosor > 15 mm, sin otra causa probable. El análisis genético permite identificar mutaciones en genes que codifican diferentes estructuras del sarcómero responsables del desarrollo de la MCH en aproximadamente el 60% de los casos, lo que permite el tamizaje de familiares y el asesoramiento genético, como parte importante del manejo de pacientes y familiares. Varios conceptos sobre la MCH han sido revisados recientemente, incluida su prevalencia de 1 entre 250 individuos, por lo tanto, no es una enfermedad rara, sino subdiagnosticada. La gran mayoría de los pacientes son asintomáticos. En los casos sintomáticos, la obstrucción del tracto de salida ventricular izquierdo (TSVI) es el trastorno principal responsable de los síntomas, y su presencia debe investigarse en todos los casos. En aquellos en los que el ecocardiograma en reposo o la maniobra de Valsalva no detecta un gradiente intraventricular significativo (> 30 mmHg), deben someterse a ecocardiografía de esfuerzo para detectar la obstrucción del TSVI. Los pacientes con síntomas limitantes y obstrucción grave del TSVI, refractarios al uso de betabloqueantes y verapamilo, deben recibir terapias de reducción septal o usar nuevos medicamentos inhibidores de la miosina cardíaca. Finalmente, los pacientes adecuadamente identificados con un riesgo aumentado de muerte súbita pueden recibir medidas profilácticas con el implante de un cardioversor-desfibrilador implantable (CDI).A cardiomiopatia hipertrófica (CMH) é uma forma de doença do músculo cardíaco de causa genética, caracterizada pela hipertrofia das paredes ventriculares. O diagnóstico requer detecção por métodos de imagem (Ecocardiograma ou Ressonância Magnética Cardíaca) de qualquer segmento da parede do ventrículo esquerdo com espessura > 15 mm, sem outra causa provável. A análise genética permite identificar mutações de genes codificantes de diferentes estruturas do sarcômero responsáveis pelo desenvolvimento da CMH em cerca de 60% dos casos, permitindo o rastreio de familiares e aconselhamento genético, como parte importante do manejo dos pacientes e familiares. Vários conceitos sobre a CMH foram recentemente revistos, incluindo sua prevalência de 1 em 250 indivíduos, não sendo, portanto, uma doença rara, mas subdiagnosticada. A vasta maioria dos pacientes é assintomática. Naqueles sintomáticos, a obstrução do trato de saída do ventrículo esquerdo (OTSVE) é o principal distúrbio responsável pelos sintomas, devendo-se investigar a sua presença em todos os casos. Naqueles em que o ecocardiograma em repouso ou com Manobra de Valsalva não detecta gradiente intraventricular significativo (> 30 mmHg), devem ser submetidos à ecocardiografia com esforço físico para detecção da OTSVE.   Pacientes com sintomas limitantes e grave OTSVE, refratários ao uso de betabloqueadores e verapamil, devem receber terapias de redução septal ou uso de novas drogas inibidoras da miosina cardíaca. Por fim, os pacientes adequadamente identificados com risco aumentado de morta súbita podem receber medida profilática com implante de cardiodesfibrilador implantável (CDI)
    • …
    corecore