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Abstract : Let M and M′ be Gamma rings, respectively. We study the additivity of surjective
elementary maps of M ×M′. We prove that if M contains a non-trivial γ-idempotent satisfying

some conditions, then they are additive.
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1. Gamma rings and elementary maps

Let M and Γ be two abelian groups. We call M a Γ-ring if the following
conditions are satisfied:

(i) xαy ∈M,

(ii) (x+ y)αz = xαz + yαz, xα(y + z) = xαy + xαz,

(iii) x(α+ β)y = xαy + xβy,

(iv) (xαy)βz = xα(yβz),

for all x, y, z ∈M and α, β ∈ Γ.
N. Nobusawa introduced the notion of a Γ-ring, more general than a ring

in his paper entitled “On a generalization of the ring theory”. For those
readers who are not familiar with this language of Γ-rings we recommend “On
a generalization of the ring theory” and “On the Γ-rings of Nobusawa” [2]
and [1] respectively. Our purpose in this paper is the study of the additivity
of a specific application on Γ-rings, for this we will address some preliminary
definitions.

A nonzero element 1 ∈ M is called a multiplicative γ-identity of M or
γ-unity element (for some γ ∈ Γ) if 1γx = xγ1 = x for all x ∈M. A nonzero
element e1 ∈M is called a γ1-idempotent (for some γ1 ∈ Γ) if e1γ1e1 = e1 and
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a nontrivial γ1-idempotent if it is a γ1-idempotent different from multiplicative
γ1-identity element of M.

Let Γ, Γ′, M and M′ be additive groups such that M is a Γ-ring and
M′ is a Γ′-ring. Let M : M → M′ and M∗ : M′ → M be two maps and
φ : Γ→ Γ′, φ∗ : Γ′ → Γ two bijective maps. We call the ordered pair (M,M∗)
an elementary map of M×M′ if

M(aαM∗(x)βb) = M(a)φ(α)xφ(β)M(b),

M∗(xµM(a)νy) = M∗(x)φ∗(µ)aφ∗(ν)M∗(y)

for all α, β ∈ Γ, a, b ∈M, µ, ν ∈ Γ′ and x, y ∈M′.
We say that the elementary map (M,M∗) of M ×M′ is additive (resp.,

injective, surjective, bijective) if both maps M and M∗ are additive (resp.,
injective, surjective, bijective).

Let M and Γ be two abelian groups such that M is a Γ-ring and e1 ∈M a
nontrivial γ1-idempotent. Let us consider e2 : Γ ×M →M, e′2 : M × Γ →M
two M-additive maps such that e2(γ1, a) = a − e1γ1a, e′2(a, γ1) = a − aγ1e1.
Let us denote e2αa = e2(α, a), aαe2 = e′2(a, α), 11αa = e1αa+ e2αa, aα11 =
aαe1 + aαe2 and suppose (aαe2)βb = aα(e2βb) for all α, β ∈ Γ and a, b ∈M.
Then 11γ1a = aγ111 = a and (aα11)βb = aα(11βb), for all α, β ∈ Γ and
a, b ∈M, and M has a Peirce decomposition M = M11 ⊕M12 ⊕M21 ⊕M22,
where Mij = eiγ1Mγ1ej (i, j = 1, 2), satisfying the multiplicative relations:

(i) MijΓMjl ⊆Mil(i, j, l = 1, 2);

(ii) Mijγ1Mkl = 0 if j 6= k (i, j, k, l = 1, 2).

If A and B are subsets of a Γ-ring M and Θ ⊆ Γ, we denote AΘB the
subset of M consisting of all finite sums of the form

∑
i aiγibi where ai ∈ A,

γi ∈ Θ and bi ∈ B. A right ideal (resp., left ideal) of a Γ-ring M is an additive
subgroup I of M such that IΓM ⊆ I (resp., MΓI ⊆ I). If I is both a right
and a left ideal of M, then we say that I is an ideal or two-side ideal of M.

An ideal P of a Γ-ring M is called prime if for any ideals A,B ⊆ M,
AΓB ⊆ P implies that A ⊆ P or B ⊆ P. A Γ-ring M is said to be prime if
the zero ideal is prime.

Theorem 1.1. ([9, Theorem 4]) If M is a Γ-ring, the following condi-
tions are equivalent:

(i) M is a prime Γ-ring;

(ii) if a, b ∈M and aΓMΓb = 0, then a = 0 or b = 0.
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The first result about the additivity of maps on rings was given by Martin-
dale III in an excellent paper [10]. He established a condition on a ring M such
that every multiplicative bijective map on M is additive. Li and Lu [8] also
considered this question in the context of prime associative rings containing
a nontrivial idempotent. They proved the following theorem.

Theorem 1.2. Let M and M′ be two associative rings. Suppose that M
is a 2-torsion free ring containing a family {eα : α ∈ Λ} of idempotents which
satisfies:

(i) If x ∈M is such that xM = 0, then x = 0;

(ii) If x ∈ M is such that eαMx = 0 for all α ∈ Λ, then x = 0 (and hence
Mx = 0 implies x = 0);

(iii) For each α ∈ Λ and x ∈M, if eαxeαM(1− eα) = 0 then eαxeα = 0.

Then every surjective elementary map (M,M∗) of M×M′ is additive.

During the last decade, many mathematicians devoted to study the ad-
ditivity of maps on associative rings. However, is very difficult to say any-
thing when these applications are defined on arbitrary rings which are not
necessarily associative. For the reader interested in applications defined in
non-associative rings we recommend some papers [3, 4, 5, 6, 7]. Thus this
motivated us in the present paper takes up the special case of an Γ-ring. We
investigate the problem of when a elementary map must be an additive map
on the class of Γ-rings.

2. The main result

We will prove that every surjective elementary map (M,M∗) of M ×M′

is additive for this we will assume that M contains a family {eα : α ∈ Λ} of
γα-idempotents satisfying some conditions. Our main result reads as follows.

Theorem 2.1. Let Γ, Γ′, M and M′ be additive groups such that M is a
Γ-ring and M′ is a Γ′-ring. Suppose that M contains a family {eα : α ∈ Λ}
of γα-idempotents which satisfies:

(i) If x ∈M is such that xΓM = 0, then x = 0;

(ii) If x ∈ M is such that eαγαMΓx = 0 for all α ∈ Λ, then x = 0 (and
hence MΓx = 0 implies x = 0);
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(iii) For each α ∈ Λ and x ∈ M, if (eαγαxγαeα)ΓMΓ(1α − eα) = 0 then
eαγαxγαeα = 0.

Then every surjective elementary map (M,M∗) of M×M′ is additive.

The following lemmas has the same hypotheses of Theorem 2.1 and we
need these lemmas for the proof of this theorem. Thus, let us consider e1 ∈
{eα : α ∈ Λ} a nontrivial γ1-idempotent of M and 11 = e1 + e2. We begin
with the following trivial lemma

Lemma 2.1. M(0) = 0 and M∗(0) = 0.

Proof. M(0) = M(0αM∗(0)β0) = M(0)φ(α)0φ(β)M(0) = 0. Similarly,
we have M∗(0) = 0.

Lemma 2.2. M and M∗ are bijective.

Proof. It suffices to prove that M and M∗ are injective. First show
that M is injective. Let x1 and x2 be in M and suppose that M(x1) =
M(x2). Since M∗(uµM(xi)νv) = M∗(u)φ∗(µ)xiφ

∗(ν)M∗(v) (i = 1, 2) for
all µ, ν ∈ Γ′ and u, v ∈ M′, it follows that M∗(u)φ∗(µ)x1φ

∗(ν)M∗(v) =
M∗(u)φ∗(µ)x2φ

∗(ν)M∗(v). Hence from the surjectivity of φ∗ and M∗ and
conditions (i) and (ii) we conclude that x1 = x2. Now we turn to proving the
injectivity of M∗. Let u1 and u2 be in M′ and suppose M∗(u1) = M∗(u2).
Since

M∗M(xαM∗(ui)βy) = M∗
(
M(x)φ(α)uiφ(β)M(y)

)
= M∗

(
M(x)φ(α)MM−1(ui)φ(β)M(y)

)
= M∗M(x)φ∗φ(α)M−1(ui)φ

∗φ(β)M∗M(y)

for all α, β ∈ Γ and x, y ∈M, it follows that

M∗M(x)φ∗φ(α)M−1(u1)φ
∗φ(β)M∗M(y)

= M∗M(x)φ∗φ(α)M−1(u2)φ
∗φ(β)M∗M(y).

Noting that φ∗φ and M∗M are also surjective, we see that M−1(u1) =
M−1(u2), by conditions (i) and (ii). Consequently u1 = u2.



additivity of elementary maps on gamma rings 65

Lemma 2.3. The pair (M∗−1,M−1) is an elementary map of M ×M′,
that is, the maps M∗−1 : M→M′ and M−1 : M′ →M satisfy

M∗−1
(
aαM−1(x)βb

)
= M∗−1(a)φ∗−1(α)xφ∗−1(β)M∗−1(b),

M−1
(
xµM∗−1(a)νy

)
= M−1(x)φ−1(µ)aφ−1(ν)M−1(y)

for all α, β ∈ Γ, µ, ν ∈ Γ′, a, b ∈M and x, y ∈M′.

Proof. The first equality can follow from

M∗
(
M∗−1(a)φ∗−1(α)xφ∗−1(β)M∗−1(b)

)
= M∗

(
M∗−1(a)φ∗−1(α)MM−1(x)φ∗−1(β)M∗−1(b)

)
= aφ∗

(
φ∗−1(α)

)
M−1(x)φ∗

(
φ∗−1(β)

)
b

= aαM−1(x)βb

and the second equality follows in a similar way.

Lemma 2.4. Let s, a, b ∈M such that M(s) = M(a) +M(b). Then

(i) M(sαxβy) = M(aαxβy) +M(bαxβy) for α, β ∈ Γ and x, y ∈M;

(ii) M(xαyβs) = M(xαyβa) +M(xαyβb) for α, β ∈ Γ and x, y ∈M;

(iii) M∗−1(xαsβy) = M∗−1(xαaβy) +M∗−1(xαbβy) for α, β ∈ Γ and x, y ∈
M for x, y ∈M.

Proof. (i) Let α, β ∈ Γ and x, y ∈M. Then

M(sαxβy) = M
(
sαM∗M∗−1(x)βy

)
= M(s)φ(α)M∗−1(x)φ(β)M(y)

=
(
M(a) +M(b)

)
φ(α)M∗−1(x)φ(β)M(y)

= M(a)φ(α)M∗−1(x)φ(β)M(y)

+M(b)φ(α)M∗−1(x)φ(β)M(y)

= M(aαxβy) +M(bαxβy).

(ii) The proof is similar to (i).
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(iii) Let x, y ∈M. By Lemma 2.3

M∗−1(xαsβy) = M∗−1(xαM−1M(s)βy)

= M∗−1(x)φ∗−1(α)M(s)φ∗−1(β)M∗−1(y)

= M∗−1(x)φ∗−1(α)
(
M(a) +M(b)

)
φ∗−1(β)M∗−1(y)

= M∗−1(x)φ∗−1(α)M(a)φ∗−1(β)M∗−1(y)

+M∗−1(x)φ∗−1(α)M(b)φ∗−1(β)M∗−1(y)

= M∗−1(xαaβy) +M∗−1(xαbβy).

The proof is complete.

Lemma 2.5. The following are true:

(i) M(a11 + a12 + a21 + a22) = M(a11) +M(a12) +M(a21) +M(a22);

(ii) M∗−1(a11 + a12 + a21 + a22) = M∗−1(a11) +M∗−1(a12) +M∗−1(a21) +
M∗−1(a22).

Proof. By the surjectivity of M , there exists s ∈ M such that M(s) =
M(a11) +M(a12) +M(a21) +M(a22). Now, for arbitrary α, β ∈ Γ, xi1 ∈Mi1

and y1j ∈M1j , we have

M∗−1(xi1αe1γ1sγ1e1βy1j)

= M∗−1(xi1αe1γ1a11γ1e1βy1j) +M∗−1(xi1αe1γ1a12γ1e1βy1j)

+M∗−1(xi1αe1γ1a21γ1e1βy1j) +M∗−1(xi1αe1γ1a22γ1e1βy1j)

= M∗−1(xi1αe1γ1a11γ1e1βy1j),

which implies

xi1αe1γ1
(
s− (a11 + a12 + a21 + a22)

)
γ1e1βy1j = 0. (2.1)

In a similar way, for y2j ∈M2j we get that

xi1αe1γ1
(
s− (a11 + a12 + a21 + a22)

)
γ1e1βy2j = 0. (2.2)

From (2.1) and (2.2) we conclude

xi1αe1γ1
(
s− (a11 + a12 + a21 + a22)

)
γ1e1βy = 0.
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In a similar way, for y1j ∈M1j and y2j ∈M2j we get that

xi1αe1γ1
(
s− (a11 + a12 + a21 + a22)

)
γ1e2βy1j = 0,

xi1αe1γ1
(
s− (a11 + a12 + a21 + a22)

)
γ1e2βy2j = 0,

respectively, which implies

xi1αe1γ1
(
s− (a11 + a12 + a21 + a22)

)
γ1e2βy = 0.

Thus,
xi1αe1γ1

(
s− (a11 + a12 + a21 + a22)

)
γ111βy = 0,

for all β ∈ Γ, y ∈M, that is,

xi1αe1γ1
(
s− (a11 + a12 + a21 + a22)

)
ΓM = 0.

By condition (i) of the Theorem we have

xi1αe1γ1
(
s− (a11 + a12 + a21 + a22)

)
= 0.

Repeating the above arguments, for xi2 ∈Mi2 we get that

xi2αe1γ1
(
s− (a11 + a12 + a21 + a22)

)
= 0

which implies
xαe1γ1

(
s− (a11 + a12 + a21 + a22)

)
= 0.

Similarly, we obtain

xαe2γ1
(
s− (a11 + a12 + a21 + a22)

)
= 0,

which yields
xα
(
s− (a11 + a12 + a21 + a22)

)
= 0.

Thus, MΓ
(
s− (a11 + a12 + a21 + a22)

)
= 0 which results in

s = a11 + a12 + a21 + a22.

The proof of (ii) is similar, since the pair (M∗−1;M−1) is also an elemen-
tary map of M×M′.

Lemma 2.6. The following are true:

(i) M(a12 + b12αa22) = M(a12) +M(b12αa22);
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(ii) M(a11 + a12αa21) = M(a11) +M(a12αa21);

(iii) M(a21 + a22αb21) = M(a21) +M(a22αb21).

Proof. (i) From Lemma 2.5-(i) and (ii) we have

M(a12 + b12αa22)

= M
(
e1γ1(e1 + b12)γ1(a12 + e2αa22)

)
= M(e1)φ(γ1)M

∗−1(e1 + b12)φ(γ1)M(a12 + e2αa22)

= M(e1)φ(γ1)
(
M∗−1(e1) +M∗−1(b12)

)
φ(γ1)

(
M(a12) +M(e2αa22)

)
= M(e1)φ(γ1)M

∗−1(e1)φ(γ1)M(a12)

+M(e1)φ(γ1)M
∗−1(e1)φ(γ1)M(e2αa22)

+M(e1)φ(γ1)M
∗−1(b12)φ(γ1)M(a12)

+M(e1)φ(γ1)M
∗−1(b12)φ(γ1)M(e2αa22)

= M(e1γ1e1γ1a12) +M(e1γ1e1γ1a22) +M(e1γ1b12γ1a12)

+M(e1γ1b12γ1e2αa22)

= M(a12) +M(b12αa22).

Note that we use properties (i) and (ii) in

M(a12 + e2αa22) = M(a12) +M(e2αa22)

and
M∗−1(e1 + b12) = M∗−1(e1) +M∗−1(b12),

respectively. So (i) follows. Observing that

a11 + a12αa21 = (a11 + a12αe2)γ1(e1 + a21)γ1e1,

a21 + a22αa21 = (a21 + a22αe2)γ1(e1 + b21)γ1e1,

then (ii) and (iii) can be proved similarly.

Lemma 2.7. M(a21γ1a12 + a22γ1b22) = M(a21γ1a12) +M(a22γ1b22).

Proof. We first claim that

M(a21γ1a12γ1c22 + a22γ1b22γ1c22)

= M(a21γ1a12γ1c22) +M(a22γ1b22γ1c22)
(2.3)
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holds for all c22 ∈M22. Indeed, from Lemma 2.5-(i) and (ii), we see that

M(a21γ1a12αc22 + a22γ1b22αc22)

= M
(
(a21 + a22)γ1(a12 + b22)αc22

)
= M(a21 + a22)φ(γ1)M

∗−1(a12 + b22)φ(α)M(c22)

=
(
M(a21) +M(a22)

)
φ(γ1)

(
M∗−1(a12) +M∗−1(b22)

)
φ(α)M(c22)

= M(a21)φ(γ1)M
∗−1(a12)φ(α)M(c22)

+M(a21)φ(γ1)M
∗−1(b22)φ(α)M(c22)

+M(a22)φ(γ1)M
∗−1(a12)φ(α)M(c22)

+M(a22)φ(γ1)M
∗−1(b22)φ(α)M(c22)

= M(a21γ1a12αc22) +M(a21γ1b22αc22) +M(a22γ1a12αc22)

+M(a22γ1b22αc22)

= M(a21γ1a12αc22) +M(a22γ1b22αc22),

as desired. Now we find s ∈M such that M(s) = M(a21γ1a12)+M(a22γ1b22).
For arbitrary element x21 ∈M21, by Lemma 2.4-(i) and Lemma 2.6-(iii),

M(sαx21) = M(sαx21γ1e1)

= M
(
(a21γ1a12)αx21γ1e1

)
+M

(
(a22γ1b22)αx21γ1e1

)
= M(a21γ1a12αx21 + a22γ1b22αx21).

It follows that (
s− (a21γ1a12 + a22γ1b22)

)
αx21 = 0, (2.4)

for all α ∈ Γ. Our next step will be to prove that(
s− (a21γ1a12 + a22γ1b22)

)
αx22 = 0 (2.5)

holds for every x22 ∈ M22. First, for y21, by Lemmas 2.4-(i) and Lemma
2.6-(iii)

M(sαx22βy21) = M
(
(a21γ1a12)αx22βy21

)
+M

(
(a22γ1b22)αx22βy21

)
= M

(
(a21γ1a12)αx22βy21 + (a22γ1b22)αx22βy21

)
,

which implies that sαx22βy21 = (a21γ1a12)αx22βy21 + (a22γ1b22)αx22βy21. It
follows that

(
s− (a21γ1a12 + a22γ1b22)

)
αx22 · βy21 = 0.
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For y22 ∈M22, by Lemma 2.4-(i) and (2.3) we have

M(sαx22βy22) = M
(
(a21γ1a12)αx22βy22

)
+M

(
(a22γ1b22)αx22βy22

)
= M

(
(a21γ1a12)αx22βy22

)
+M

(
(a22γ1b22)αx22βy22

)
= M

(
a21γ1a12αx22βy22

)
+M

(
(a22γ1b22)αx22βy22

)
= M

(
a21γ1a12αx22βy22 + (a22γ1b22)αx22βy22

)
= M

(
(a21γ1a12)αx22βy22 + (a22γ1b22)αx22βy22

)
yielding that sαx22βy22 = (a21γ1a12 + a22γ1b22)αx22βy22. It follows that(
s− (a21γ1a12 + a22γ1b22)

)
αx22βy22 = 0. Hence, we obtain that(

s− (a21γ1a12 + a22γ1b22)
)
αx22 · ΓM = 0.

So Eq. (2.5) follows by Theorem 2.1 condition (i).
From Eqs. (2.4) and (2.5), we can get that

(
s−(a21γ1a12+a22γ1b22)

)
ΓM =

0. Therefore, s = a21γ1a12 + a22γ1b22 by Theorem 2.1 condition (i) again.

Taking Lemma 2.3 into account, still hold true when M is replaced by
M∗−1, that is

Lemma 2.8. The following are true:

(i) M∗−1(a12 + b12αa22) = M∗−1(a12) +M∗−1(b12αa22).

(ii) M∗−1(a11 + a12αa21) = M∗−1(a11) +M∗−1(a12αa21).

(iii) M∗−1(a21 + a22αb21) = M∗−1(a21) +M∗−1(a22αb21).

(iv) M∗−1(a21γ1a12 + a22γ1b22) = M∗−1(a21γ1a12) +M∗−1(a22γ1b22).

Lemma 2.9. M(a12 + b12) = M(a12) +M(b12).

Proof. Let s ∈M such that M(s) = M(a12) +M(b12).
For x1j ∈M1j , applying Lemma 2.4-(i),

M(sγ1e1αx1j) = M(a12γ1e1αx1j) +M(b12γ1e1αx1j) = 0.

These equations show that sγ1e1αx1j = 0 = (a12 + b12)γ1e1αx1j . Hence,(
s− (a12 + b12)

)
γ1e1αx1j = 0.

For all x2j ∈M2j

M∗−1(sγ1e1αx2j) = M∗−1(a12γ1e1αx2j) +M∗−1(b12γ1e1αx2j) = 0,
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which implies that (
s− (a12 + b12)

)
γ1e1αx2j = 0.

Thus (
s− (a12 + b12)

)
γ1e1αx = 0,

for all α ∈ Γ and x ∈M, which implies(
s− (a12 + b12)

)
γ1e1ΓM = 0.

For y11 ∈M11, applying Lemma 2.4-(i),(ii),

M(y11βe1γ1sγ1e2αx22) = M(y11βe1γ1a12γ1e2αx22)

+M(y11βe1γ1b12γ1e2αx22)

= M(y11βe1γ1a12γ1e2αx22)

+M(y11βe1γ1b12γ1e2αx22)

= M(y11βe1γ1(a12 + b12)γ1e2αx22)

These equations show that

y11βe1γ1
(
s− (a12 + b12)

)
γ1e2αx22 = 0.

For all y21 ∈M21

M∗−1(y21βe1γ1sγ1e2αy21) = M∗−1(y21βe1γ1a12γ1e2αx22)

+M∗−1(y21βe1γ1b12γ1e2αx22)

= M∗−1(y21βe1γ1a12γ1e2αx22)

+M∗−1(y21βe1γ1y21βe1γ1b12γ1e2αx22)

= M∗−1(y21βe1γ1(a12 + b12)γ1e2αx22)

= M∗−1
(
y21βe1γ1(a12 + b12)γ1e2αx22

)
which implies that

y21βe1γ1
(
s− (a12 + b12)

)
γ1e2αx22 = 0.

For yi2 ∈Mi2, applying Lemma 2.4-(i),(ii),

M(yi2βe1γ1sγ1e2αx22) = M(yi2βe1γ1a12γ1e2αx22)

+M(yi2βe1γ1b12γ1e2αx22) = 0,
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which implies

yi2βe1γ1sγ1e2αx22 = 0 = yi2βe1γ1(a12 + b12)γ1e2αx22,

yβe1γ1
(
s−(a12 + b12)

)
γ1e2αx22 = 0.

For yij ∈Mij , applying Lemma 2.4-(i),(ii),

M(yijβe2γ1sγ1e2αx22) = M(yijβe2γ1a12γ1e2αx22)

+M(yijβe2γ1b12γ1e2αx22) = 0,

yijβe2γ1sγ1e2αx22 = 0 = yijβe2γ1(a12 + b12)γ1e2αx22.

These equations show that

yijβe2γ1
(
s− (a12 + b12)

)
γ1e2αx22 = 0,

yβe2γ1
(
s− (a12 + b12)

)
γ1e2αx22 = 0,

MΓ
(
s− (a12 + b12)

)
γ1e2αx22 = 0,(

s− (a12 + b12)
)
γ1e2αx22 = 0,(

s− (a12 + b12)
)
γ1e2αx = 0,(

s− (a12 + b12)
)
ΓM = 0,

s = a12 + b12.

Lemma 2.10. M(a11 + b11) = M(a11) +M(b11).

Proof. Choose s = s11 + s12 + s21 + s22 ∈M such that M(s) = M(a11) +
M(b11).

M(s) = M(e1γ1a11γ1e1) +M(e1γ1b11γ1e1)

= M(e1)φ(γ1)M
∗−1(a11)φ(γ1)M(e1)

+M(e1)φ(γ1)M
∗−1(b11)φ(γ1)M(e1)

= M(e1)φ(γ1)
(
M∗−1(a11) +M∗−1(b11)

)
φ(γ1)M(e1)

= M(e1)φ(γ1)
(
M∗−1(e1γ1a11γ1e1) +M∗−1(e1γ1b11γ1e1)

)
φ(γ1)M(e1)

= M(e1)φ(γ1)M
∗−1(e1γ1sγ1e1)φ(γ1)M(e1)

= M(e1γ1e1γ1sγ1e1γ1e1)

= M(e1γ1sγ1e1) = M(s11).
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It follows that s = s11. Hence s− (a11 + b11) ∈M11.
First we let x11 ∈M12 be arbitrary. Applying Lemma 2.4-(i) we get that

M(sαe1γ1x11γ1e1βe2)

= M(a11αe1γ1x11γ1e1βe2) +M(b11αe1γ1x11γ1e1βe2)

= M(a11αe1γ1x11γ1e1βe2 + b11αe1γ1x11γ1e1βe2)

= M
(
(a11 + b11)αe1γ1x11γ1e1βe2

)
yielding that sαe1γ1x11γ1e1βe2 = (a11 + b11)αe1γ1x11γ1e1βe2. Therefore(

s− (a11 + b11)
)
αe1γ1x11γ1e1βe2 = 0.

This implies (
s− (a11 + b11)

)
αe1γ1xγ1e1βe2 = 0. (2.6)

Second we let x12 ∈ M12 be arbitrary. Applying Lemma 2.4-(i) we get
that

M(sαe1γ1x12γ1e2βe2)

= M(a11αe1γ1x12γ1e2βe2) +M(b11αe1γ1x12γ1e2βe2)

= M(a11αe1γ1x12γ1e2βe2 + b11αe1γ1x12γ1e2βe2)

= M
(
(a11 + b11)αe1γ1x12γ1e2βe2

)
yielding that sαe1γ1x12γ1e2βe2 = (a11 + b11)αe1γ1x12γ1e2βe2. Therefore(

s− (a11 + b11)
)
αe1γ1x12γ1e2βe2 = 0.

This implies (
s− (a11 + b11)

)
αe1γ1xγ1e2βe2 = 0. (2.7)

Third we let x21 ∈M21 be arbitrary. Applying Lemma 2.4-(i) we get that

M(sαe2γ1x21γ1e1βe2)

= M(a11αe2γ1x21γ1e1βe2) +M(b11αe2γ1x21γ1e1βe2)

= M(a11αe2γ1x21γ1e1βe2 + b11αe2γ1x21γ1e1βe2)

= M
(
(a11 + b11)αe2γ1x21γ1e1βe2

)
yielding that sαe2γ1x21γ1e1βe2 = (a11 + b11)αe2γ1x21γ1e1βe2. Therefore(

s− (a11 + b11)
)
αe2γ1x21γ1e1βe2 = 0.
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This implies (
s− (a11 + b11)

)
αe2γ1xγ1e1βe2 = 0. (2.8)

Lastly we let x22 ∈M22 be arbitrary. Applying Lemma 2.4-(i) we get that

M(sαe2γ1x22γ1e2βe2)

= M(a11αe2γ1x22γ1e2βe2) +M(b11αe2γ1x22γ1e2βe2)

= M(a11αe2γ1x22γ1e2βe2 + b11αe2γ1x22γ1e2βe2)

= M
(
(a11 + b11)αe2γ1x22γ1e2βe2

)
yielding that sαe2γ1x22γ1e2βe2 = (a11 + b11)αe2γ1x22γ1e2βe2. Therefore(

s− (a11 + b11)
)
αe2γ1x22γ1e2βe2 = 0.

This implies (
s− (a11 + b11)

)
αe2γ1xγ1e2βe2 = 0. (2.9)

From (2.6)-(2.9) we have(
s− (a11 + b11)

)
α11γ1xγ111βe2 = 0,

which implies (
s− (a11 + b11)

)
αxβe2 = 0,

for all α, β ∈ Γ and x ∈M, which yields(
s− (a11 + b11)

)
ΓMΓe2 = 0.

So
(
s− (a11 + b11)

)
αMβ(11 − e1) = 0 which implies(

e1γ1(s− (a11 + b11)γ1e1
)
ΓMΓ(11 − e1) = 0.

It follows, from Theorem 2.1 condition (iii), that s = a11 + b11.

Lemma 2.11. M is additive on e1γ1M = M11 + M12.

Proof. The proof is the same as that of Martindale III (1969, Lemma 5)
and is included for the sake of completeness. In fact, let a11, b11 ∈ M11 and
a12, b12 ∈M12. Making use of Lemmas 2.5, 2.9 and 2.10 we can see that

M
(
(a11 + a12) + (b11 + b12)

)
= M

(
(a11 + b11) + (a12 + b12)

)
= M(a11 + b11) +M(a12 + b12)

= M(a11) +M(b11) +M(a12) +M(b12)

= M(a11 + a12) +M(b11 + b12).

holds true, as desired.
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Proof of Theorem 2.1. Suppose that a, b ∈ M and choose s ∈ M such
that M(s) = M(a) + M(b). For all α ∈ Λ, M is additive on eαγαM because
of Lemma 2.11. Thus, for every r ∈M, we have

M(eαγαrµs) = M(eα)φ(γα)M∗−1(r)φ(µ)M(s)

= M(eα)φ(γα)M∗−1(r)φ(µ)
(
M(a) +M(b)

)
= M(eα)φ(γα)M∗−1(r)φ(µ)M(a)

+M(eα)φ(γα)M∗−1(r)φ(µ)M(b)

= M(eαγαrµa) +M(eαγαrµb)

= M(eαγαrµa+ eαγαrµb)

= M
(
eαγαrµ(a+ b)

)
.

So eαγαrµs = eαγαrµ(a + b). Therefore eαγαMΓ
(
s − (a + b)

)
= 0 holds for

every α ∈ Λ. We then conclude that s = a + b from Theorem 2.1 condition
(ii). This shows that M is additive on M.

To prove the additivity of M∗, let x, y ∈ M′. For a, b ∈ M, by using the
additivity of M , we have

M
(
aλ
(
M∗(x) +M∗(y)

)
µb
)

= M
(
aλM∗(x)µb

)
+M

(
aλM∗(y)µb

)
= M(a)φ(λ)xφ(µ)M(b)

+M(a)φ(λ)yφ(µ)M(b)

= M(a)φ(λ)(x+ y)φ(µ)M(b)

= M
(
aλM∗(x+ y)µb

)
.

It follows that aλ
(
M∗(x) +M∗(y)−M∗(x+ y)

)
µb = 0 holds for all a, b ∈M,

that is,
aλ
(
M∗(x) +M∗(y)−M∗(x+ y)

)
ΓM = 0

holds for all a ∈M, which implies

aλ
(
M∗(x) +M∗(y)−M∗(x+ y)

)
= 0

holds for all a ∈M, which implies

MΓ
(
M∗(x) +M∗(y)−M∗(x+ y)

)
= 0

which forces M∗(x+ y) = M∗(x) +M∗(y) because of Theorem 2.1 conditions
(i) and (ii). This completes the proof.
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Corollary 2.1. Let Γ, Γ′, M and M′ be additive groups such that M
is a Γ-ring and M′ is a Γ′-ring such that M is a prime Γ-ring containing
a non-trivial γ-idempotent (M need not have an γ-identity element), where
γ ∈ Γ. Suppose e2 : Γ×M→M, e′2 : M×Γ→M two M-additive maps such
that e2(γ1, a) = a − e1γ1a, e′2(a, γ1) = a − aγ1e1. Denote e2αa = e2(α, a),
aαe2 = e′2(a, α), 11αa = e1αa + e2αa, aα11 = aαe1 + aαe2 and suppose
(aαe2)βb = aα(e2βb) for all α, β ∈ Γ and a, b ∈ M. Then every surjective
elementary map (M,M∗) of M×M′ is additive.

Proof. The result follows directly from Theorem 2.1 and Theorem 1.1.

Corollary 2.2. Let Γ, Γ′, M and M′ be additive groups such that M
is a Γ-ring and M′ is a Γ′-ring such that M is a prime Γ-ring containing a
non-trivial γ-idempotent and a γ-unity element, where γ ∈ Γ. Then every
surjective elementary map (M,M∗) of M×M′ is additive.
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