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Abstract: Let 9 and 9 be Gamma rings, respectively. We study the additivity of surjective
elementary maps of MM x M’. We prove that if 9 contains a non-trivial y-idempotent satisfying
some conditions, then they are additive.

Key words: Elementary maps, Gamma rings, additivity.

AMS Subject Class. (2010): 16Y99.

1. GAMMA RINGS AND ELEMENTARY MAPS

Let 9 and T' be two abelian groups. We call 9 a I'-ring if the following
conditions are satisfied:
(i) zay € M,
(i) (z+y)az =zaz+yaz, zaly+ z) = zay + raz,
) w(a+ By = zay + xpBy,
)

(iv) (zay)Bz = za(ypz),

(ii

for all x,y,z € M and o, B € T'.

N. Nobusawa introduced the notion of a I'-ring, more general than a ring
in his paper entitled “On a generalization of the ring theory”. For those
readers who are not familiar with this language of I'-rings we recommend “On
a generalization of the ring theory” and “On the I'-rings of Nobusawa” [2]
and [I] respectively. Our purpose in this paper is the study of the additivity
of a specific application on I'-rings, for this we will address some preliminary
definitions.

A nonzero element 1 € 9N is called a multiplicative ~y-identity of 9% or
~v-unity element (for some v € I') if 1yx = xyl = z for all z € M. A nonzero
element e; € M is called a yi-idempotent (for some vy, € ') if e1y1e1 = e1 and
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a nontrivial y1-idempotent if it is a y;-idempotent different from multiplicative
~1-identity element of 9.

Let T', T, M and 9 be additive groups such that 91 is a I'-ring and
M is a IV-ring. Let M : MM — M and M* : M — M be two maps and
¢:T =T ¢* : T/ = T two bijective maps. We call the ordered pair (M, M*)
an elementary map of 9t x M’ if

M (aaM*(x)pb) = M(a)p(e)zd(B) M (b),
M (xpM(a)vy) = M*(2)¢" (p)ag™ (v) M (y)

forall a,8 €T, a,beM, pu,v eI’ and x,y € M.

We say that the elementary map (M, M*) of M x M’ is additive (resp.,
injective, surjective, bijective) if both maps M and M* are additive (resp.,
injective, surjective, bijective).

Let 9 and I" be two abelian groups such that 91 is a I'-ring and e; € 9 a
nontrivial y;-idempotent. Let us consider eg: I' x M — M, eh: Mx T — M
two M-additive maps such that ea(y1,a) = a — e1m1a, €4(a,71) = a — ayier.
Let us denote esaa = ez(w, a), acey = eh(a, @), liaa = ejaa + esaa, aal; =
ace; + aces and suppose (aaez)fb = aa(ezfb) for all o, 5 € " and a,b € M.
Then 11via = ay1li = a and (aaly)Bb = aa(l16b), for all a,f € T' and
a,b € M, and M has a Peirce decomposition 0 = N1 S M1 D Moy D Moo,
where M;; = e;1Myie; (4,5 = 1,2), satisfying the multiplicative relations:

(i) 9Ty € M4, 4,10 = 1,2);

If A and B are subsets of a I'-ring 9 and © C I', we denote AOB the
subset of M consisting of all finite sums of the form ), a;v;b; where a; € 2,
vi € © and b; € B. A right ideal (resp., left ideal) of a I'-ring 9 is an additive
subgroup J of M such that JTM C T (resp., MI'T C 7). If J is both a right
and a left ideal of 9, then we say that J is an ideal or two-side ideal of 9.

An ideal B of a I'-ring 9 is called prime if for any ideals 2,8 C 901,
AB C P implies that A C P or B C P. A I'-ring M is said to be prime if
the zero ideal is prime.

THEOREM 1.1. ([9, THEOREM 4]) If 9 is a I'-ring, the following condi-
tions are equivalent:

(i) 9 is a prime I'-ring;
(i) ifa,b € M and al'MTb =0, then a =0 or b = 0.
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The first result about the additivity of maps on rings was given by Martin-
dale IIT in an excellent paper [10]. He established a condition on a ring 9t such
that every multiplicative bijective map on 9 is additive. Li and Lu [§] also
considered this question in the context of prime associative rings containing
a nontrivial idempotent. They proved the following theorem.

THEOREM 1.2. Let 9 and 9’ be two associative rings. Suppose that I
is a 2-torsion free ring containing a family {e, : « € A} of idempotents which
satisfies:

(i) If x € M is such that 9 = 0, then x = 0;

(ii) If x € M is such that e,Mx = 0 for all « € A, then x = 0 (and hence
Mz = 0 implies x = 0);

(iii) For each o € A and x € M, if eqxe,M(1 — ey) = 0 then eqxe, = 0.
Then every surjective elementary map (M, M*) of M x M’ is additive.

During the last decade, many mathematicians devoted to study the ad-
ditivity of maps on associative rings. However, is very difficult to say any-
thing when these applications are defined on arbitrary rings which are not
necessarily associative. For the reader interested in applications defined in
non-associative rings we recommend some papers [3, [4, [5, [6] [7]. Thus this
motivated us in the present paper takes up the special case of an I'-ring. We
investigate the problem of when a elementary map must be an additive map
on the class of I'-rings.

2. THE MAIN RESULT

We will prove that every surjective elementary map (M, M*) of 9 x MV
is additive for this we will assume that 9t contains a family {e, : o € A} of
~Yo-idempotents satisfying some conditions. Our main result reads as follows.

THEOREM 2.1. Let I', T, M and M’ be additive groups such that M is a
I-ring and M’ is a I'-ring. Suppose that M contains a family {e, : o € A}
of yq-idempotents which satisfies:

(i) If x € M is such that xI'M = 0, then z = 0;

(ii) If z € M is such that ex Vo MLz = 0 for all « € A, then x = 0 (and
hence 9T’z = 0 implies x = 0);
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(iii) For each a € A and x € M, if (eaVa®Va€a) M (14 — eq) = 0 then
eaYar¥alao = 0.

Then every surjective elementary map (M, M*) of MM x M’ is additive.

The following lemmas has the same hypotheses of Theorem and we
need these lemmas for the proof of this theorem. Thus, let us consider e; €
{eq : a € A} a nontrivial v;-idempotent of 9t and 1; = e; + e3. We begin
with the following trivial lemma

LeEMMA 2.1. M(0) =0 and M*(0) = 0.

Proof. M(0) = M(0aM*(0)30) = M(0)¢(a)0p(8)M(0) = 0. Similarly,
we have M*(0) =0. I

LEMMA 2.2. M and M™ are bijective.

Proof. 1t suffices to prove that M and M?* are injective. First show
that M is injective. Let x1 and x2 be in 91 and suppose that M(z1) =
M (z2). Since M*(upM (z;)vv) = M*(uw)¢*(p)xip*(v)M*(v) (i = 1,2) for
all p,v € TV and u,v € M, it follows that M*(u)¢*(u)zr1¢*(v)M*(v) =
M*(u)p*(pn)x2¢*(v)M*(v). Hence from the surjectivity of ¢* and M* and
conditions (i) and (ii) we conclude that z; = x2. Now we turn to proving the
injectivity of M*. Let u; and ug be in M’ and suppose M*(u1) = M*(us).
Since

M*M (zaM*(u;) By) = M* (M (x)d(e)uid(B) M (y))
= M* (M (2)$(a) MM~ (u;)$(5)M (y))
= M*M (2)¢" () M~ (u;)¢*¢(8) M* M (y)
for all o, 8 € I' and z,y € M, it follows that
M*M (2)¢™ $() M~ (ur)d*p(8) M* M (y)
= MM (x)¢*¢(c) M~ (uz)*$(8) M* M (y).

Noting that ¢*¢ and M*M are also surjective, we see that M~'(uy) =
M~ (us), by conditions (i) and (ii). Consequently u; = us. §
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LEMMA 2.3. The pair (M*~' M~') is an elementary map of MM x N,
that is, the maps M*~1 : 0t — 9 and M~ : M — M satisty

M (aaM ™! (z)Bb) = M~ (a)¢" " (a)ag™ ™ (B)M " (b),
M~ apM*~Ha)ry) = M~ (2)¢ ™ (ag™ ()M~ (y)

foralla,B €T, u,vel’, a,be M and z,y € M.

Proof. The first equality can follow from

M*(M*Ha)o* @)z ™ (B)M* 71 (b))
= M*(M*"Ha)o* ) MM (z)¢* (B)M* (b))
= g™ (¢" (@) M ()" (6" (8))b
= aaM(z)Bb

and the second equality follows in a similar way. |

LEMMA 2.4. Let s,a,b € 9 such that M(s) = M(a) + M(b). Then

(i) M(saxpPy) = M(aczfy) + M (baxpy) for a,f € I' and z,y € IM;
(ii) M(zayBs) = M(zaypfa)+ M (zaypb) for a, 5 € I' and z,y € M;
(iii) M* Y(zasBy) = M* Y (zaafy) + M*(zabBy) for a, f € T and z,y €
M for x,y € M.

Proof. (i) Let o, 8 € T and x,y € M. Then

M (sazxBy) = M(saM*M* 1(m)ﬂy)
= M(s)¢(a)M* ™ (2)$(B)M (y)
= (M(a) + M(b))d(a)M*~" (2)$(8) M (y)
= M(a)$(a) M*~ (2)9(58) M (y)
+ M(b)p(a) M (2)9(8) M (y)
= M (aczBy) + M (bazBy).

(ii) The proof is similar to (i).



66 B.L.M. FERREIRA

(iii) Let z,y € M. By Lemma 2.3

M HzasBy) = M* ™ (zaM " M(s)By)

=M (2)¢* () M(s)™H(B)M* T (y)
= MY @)o* o) (M(a) + M(b))¢* L (B)M* 1 (y)
= M @)™ @) M) (B) M (y)

+ M (2)6" (@) M (b)) (B) M (y)
= M* Y zaaBy) + M*H(zabBy).

The proof is complete. 1

LEMMA 2.5. The following are true:

(i) M(a1 + a2 + ag1 + aze) = M(ai1) + M(ai12) + M(az1) + M(az);

(ii) M*_i(an +ajg + agy + az) = M* Han) + M* Y arz) + M*agy) +
M*_ (agg).

Proof. By the surjectivity of M, there exists s € 9 such that M(s) =
M(a11) + M(a12) + M (az21) + M(ag2). Now, for arbitrary a, 8 € T', z;1 € My
and y1; € My, we have

M* N (zpaeryisyiel fy;)
= M*_l($¢1a€171a1171€1ﬂy1j) + M*_l(Cvﬂael’}’lalz’helﬂyu)
+ M* N zpaeiyiagivienfyi;) + M* (ziaeriyiazeyie Syi;)
= M* Y (zpaeiyianyiei fyi),
which implies
zinoery (s — (a1 + a1z + a1 + azz))y1e18y1; = 0. (2.1)
In a similar way, for ya; € Mo; we get that
zinoery (s — (a1 + a12 + a1 + azz))y1€18y2; = 0. (2.2)

From (2.1) and (2.2]) we conclude

zpaeryi (s — (a1 + a1z + a2 + az2))yie1fy = 0.
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In a similar way, for yi; € 9y; and yo; € Ma; we get that

zipoery (s — (a1 + a12 + ag1 + ag2))y1e28y1; = 0,
zipoery (s — (a1 + a1z + ag1 + azz))y1€28y2; = 0,

respectively, which implies
Tioern (8 — (@11 + a1z +az + azz))’h@ﬁy = 0.

Thus,
zinoeryi (s — (a1 + a1z + ag1 + az2)) 11118y = 0,

for all 5 €', y € <M, that is,
zinoery (s — (a1 + a1z + a1 + az2)) TN = 0.
By condition (i) of the Theorem we have
zpaeryi (s — (a1 + a1z + a2 + az)) = 0.
Repeating the above arguments, for z;o € ;o we get that
zipaeryi (s — (a1 + a1z + a2 + az)) =0

which implies
zaery (s — (a1 + a12 + ag1 + agzz)) = 0.

Similarly, we obtain
zaeayi (s — (a1 + a1z + a1 + ag)) =0,

which yields
xa(s — (a11 + a2 + as1 + QQZ)) =0.

Thus, SIIF(S — (a11 + a12 + a1 + agg)) = 0 which results in
§ = a11 + a1z + ag + aze.

The proof of (ii) is similar, since the pair (M*~1; M~1) is also an elemen-
tary map of 9t x . I

LEMMA 2.6. The following are true:

(1) M(a12 + bi2caze) = M(a12) + M (bi2aasgs);
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(i) M(an + arpaag) = M(an) + M(aisaas);
(i) M(ag1 + aggabar) = M(ag1) + M (azabsy).

Proof. (i) From Lemma [2.5}(i) and (ii) we have
M (a2 + biacags)

= M (e1v1(e1 + bi2)vi(a12 + eacvans))

e1)(1)M* ! (e1 + b12)p(11) M (ar2 + epaany)
e1)p(y) (M~ (er) + M* ' (b12)) p() (M (ar2) + M (e2aass))
61)¢(71)M* He)d(n)M (aro)
M (e1)¢(11) M* ™" (e1)d(71) M (eacxazs)
M (e1)p (1) M* ™ (b12)g(71) M (ar2)

+ M(el)qﬁ(%)M*_l(blz)qﬁ(’yl)M(ezaam)
= M(e1me1maiz) + M(e1yierviaze) + M(e1y1biayia12)

_M(
_M(

M (
)o(
)o(

€1

+ M (e1v1bizyieacazs)
= M(alg) + M(b12aa22).

Note that we use properties (i) and (ii) in
M (a12 + esaass) = M(a12) + M (e2cass)

and
M* ey + bra) = M* ey) + M*(b12),

respectively. So (i) follows. Observing that

a1 + aipaa = (a1 + apaez)yi(er + azi)mer,

as1 + azaa = (a2 + agaaes)yi(e1 + bai)yie,
then (ii) and (iii) can be proved similarly. 1
LEMMA 2.7. M (a21v1a12 + ayibaa) = M(a21y1a12) + M (ay1b2).
Proof. We first claim that

M(a2171a12’71622 + a227lb2271622) (2 3)
= M (ag1v1a1271022) + M (ag0v1b227y1¢22) ‘
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holds for all cp2 € M. Indeed, from Lemma [2.5}(i) and (ii), we see that

M (a2171a1200C22 + azay1b220rc22)
= M ((a21 + ag2)v1(a12 + baa)acs)
= M(az1 + a22) (1) M* ™" (@12 + bas) () M (c22)
= (M(az1) + M(as)) () (M* ™ (a12) + M* ™ (ba2)) $() M (c22)
= M(ag1)p(11)M* ™ (ar2) () M (c22)
+ M (az1) () M* " (baz)$() M (c22)
+ M(az2) () M* " (a12) () M (ca2)
+ M (a22) (1) M* ™ (baz) () M (c22)
= M (az1v1a120cc22) + M (ag1y1bacecaz) + M (asey1aizacss)
+ M (a2e71b220ec22)
= M (a21y1a120cc22) + M (a22y1b22cxcn),

as desired. Now we find s € 9t such that M (s) = M (az21v1a12) + M (az2y1b22).
For arbitrary element zo1 € a1, by Lemma [2.4}(i) and Lemma [2.6}(iii),

M (saxer) = M (saxayier)
= M ((agimai2)azayier) + M ((azyibo)azsyier)
= M (a21v1a120221 + azey1baaowar).

It follows that
(s = (a171012 + a2ay1b22)) azer = 0, (2.4)

for all @ € I'. Our next step will be to prove that
(s — (a21m1a12 + ageyibaz) ) axag = 0 (2.5)
holds for every mos € 9Maoy. First, for yo1, by Lemmas (1) and Lemma
(i)
M (saxozBya1) = M ((a21v1a12)awa2By21) + M ((azev1ba2)awasBya)
= M ((az1ma12)022By21 + (a2271b22) oo By ),

which implies that sawasBys1 = (as1v1a12)ax228y21 + (azey1bes)axesfysa1. It
follows that (S — (a21maiz2 + GQQ”thQ))Oé;CQQ - By21 = 0.
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For yo0 € Mso, by Lemma (1) and we have
M (souaaBymn) = M (
=M

=M

=M

=M

a21v1a12)0@223y22) + M ((az271b22) w2 Bya2)
a21v1a12)0@228y22) + M ((az271b22) w22 Bya2)
agy1a120228y22) + M ((az2y1baz) s By )

a2171a120@228Yy22 + (a22v1b22) a2 By22)

(
(

N N TN/

(a2171012) w22 8y22 + (a2av1b22) vx22y22)

yielding that Sa.%‘ggﬁygg = (a2171a12 + a22*ylb22)a1:225y22. It follows that
(s — (ag171012 + a2271b22))ax22,8y22 = (0. Hence, we obtain that

(s — (az171012 + azay1ba)) awa - T = 0.

So Eq. ([2.5) follows by Theorem [2.1| condition (i).

From Egs. 1) and l' we can get that (8—(&2171a12 +a2271b22))Fim =
0. Therefore, s = as1y1a12 + ag2y1b22 by Theorem condition (i) again. I

Taking Lemma into account, still hold true when M is replaced by
M*~1 that is

LEMMA 2.8. The following are true:

(1) M* Y(a1g + biaaags) = M* ae) + M* ! (bacags).

(ii) M*_l(an + CL120&CL21) = M*_l(all) + M*_l(algaagl).
(iii) M*fl(agl + aggabgl) = M*fl(agl) + M*fl(agzabgl).
(iv) M* Yag1y1a12 + ageyibee) = M* Y agiyia12) + M*(azay1b22).

LEMMA 2.9. M(aj2 + b12) = M(a12) + M (b12).

Proof. Let s € M such that M (s) = M(a12) + M (b12).
For x1; € My, applying Lemma (i),

M (syierazxy;) = M(aamieroz;) + M(biayieraxij) = 0.
These equations show that syiejax1; = 0 = (a12 + bi2)y1e1axy;. Hence,
(s — (a12 + blz))'ylelazz:lj =0.
For all z9; € My;

M*_l(s'ylela:cgj) = M*_l(alg*ylelaxgj) + M*_l(blgvlelaxgj) = O,
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which implies that
(8 — (a12 + b12))’71€1a$2j =0.

Thus
(s — (@12 + bi2))nerax = 0,

for all @ € I and x € 91, which implies
(8 — (CL12 + blg))fylelfﬂﬁ =0.
For yi1 € M1, applying Lemma 724 (3) (i)

M (y118e1yi1sy1eaawan) = M (yi118e1yia1271€2022)
+ M (y118e1v1bi2v1e2aw22)
= M (y118e1v1a1271€20:22)
+ M (y118e171biayieaaxas)
= M (y118e1y1(a12 + bia)y1eacran)

These equations show that

yi1Bern (s — (ar2 + biz) ) y1e2aaas = 0.
For all yo1 € Moy
M~ (yaa Bermisyieaayar) = M* ™' (y21 Bery1arayie2aray)

+ M* " (y21 Bermibiayieaawas)
= M* " (ya1 Bery1ar271ea0aan)

+ M* ! (ya1 Beryrya1 Beryibrayi eaawas)
= M* " (ya1Be1y1(a12 + bi2)yie2awan)
=M (y218e171 (a1 + bia)yieacxas)

which implies that
ya18e1v1 (s — (a12 + bi2)) yiezawos = 0.
For y;o € Mo, applying Lemma 2.4}(i),(ii),

M (yi2Bery1syie2axar) = M (yi2feryiaiayieaaxas)
+ M (yi2Be1y1biayieacwas) = 0,
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which implies
yieBeryisyiezarzs = 0 = yiaBeryi(aiz + bi2)yieaamwas,
yBermi (s—(ai2 + bi2))vieaaxay = 0.
For y;; € 9M;;, applying Lemma (i),(u)
M (yijBeayisyieaqaas) = M (yijBeayiaiayieaciras)
+ M (yijBeayibiayieaaras) = 0,
yijBeayisyieaaray = 0 = y;;Beayi(ais + biz)yieaaras.

These equations show that

yijBeavi (s — (a12 + bi2)) mezamag = 0,
yBeavi (s — (ar2 + biz)) vieaaxay = 0,
ML (s — (a12 + bi2))y1e20@22 = 0,

(s — (@12 + bi2)) €200 = 0,

(s — (a12 + bi2)) €20 = 0,

(s — (a12 + blg))ﬂm =0

s = a2 + bia.

LEMMA 2.10. M(a11 + b11) = M(a11) + M (b11).

Proof. Choose s = s11 + S12 + S21 + S22 € M such that M(s) = M(a11) +
M (b11).

M(s) = M(e1miai1vier) + M(eryibiivyier)

= M(e1)p(y1)M* " (a11)$(1) M (e1)

+ M(ex)$(y1) M (bi1) (1) M (e1)
= M(€1)¢(V1)(M*_1(a11) + M7 (bin)) (1) M (e)
M(e1)o(y )(M*il(el’)/lall’hel)+M*il(el’ﬂbll’Ylel))(b(’Yl)M(@l)

= M(e1)p(1) M* ™ (exmrsy1e1) (1) M (ex)
M(e1yie1visyiervien)
= M(

61718’7161) = M(Sn)-
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It follows that s = s11. Hence s — (a1 + b11) € M.
First we let z11 € 92 be arbitrary. Applying Lemma [2.4}(i) we get that
M (saeryi1z1171€18€2)
= M (a1 ceryizi1v1e1Be2) + M(brioeryiziivier Bez)
= M (a1 ce1y1z11v1€1Be2 + biioeryiziiyier fez)

= M ((a11 + bi)aeryiziiyier Bez)

yielding that sae;yiz1171€18€2 = (@11 + bi1)aeryix11y1€15e2. Therefore

(s — (a11 + b11))aeryiziiyie1fez = 0.
This implies
(s = (a11 + b)) aeryizyier feg = 0. (2.6)
Second we let z12 € Mz be arbitrary. Applying Lemma [2.4}(i) we get
that
M (sae1y121271023€2)
= M(a11ce1niz1271€28e2) + M (briaeryiriayieales)
= M(aj1ce1y11271€20€2 4+ briaeryizi271€25€2)

= M((all + bn)aewlxlgmegﬂeg)
yielding that saejyiz1271€28€2 = (a11 + bi11)aeiy1x1271€28€2. Therefore
(s — (a11 + bi1))aervizioyieaBey = 0.

This implies
(s = (a11 + bu1))aeryizyieafes = 0. (2.7)
Third we let x91 € Moy be arbitrary. Applying Lemma (1) we get that

M (saeayrwor1y1€18€2)
= M(anaesmizaivieifez) + M(biiaeryizayiel fes)
= M (a11aeay1x2171€108€2 + biiceayizaiyier PSea)
= M ((a11 + bi1)aeamzaimiel fea)

yielding that saeayiz2171€18€2 = (@11 + bi1)aeay1x21y1€18e2. Therefore

(s — (a11 + bi1))aeayizaryier ey = 0.
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This implies
(s — (a11 + bi1))aeayrzyier fes = 0. (2.8)
Lastly we let zoy € 9y be arbitrary. Applying Lemmal[2.4}(i) we get that
M (saeay1w2ay1e28e2)
= M(anaeamzaeviezfes) + M(briaeryizaoyiezfer)
= M(a11ceay1z9271€28€2 + briaeayiwaayieaBes)
= M ((a11 + bi1)aeayiza271€2€2)
yielding that saeayizo2y1€28€2 = (a11 + bi1)aeay1x22v1€28€2. Therefore
(s — (a11 + b11)) ceayizagyi€28e2 = 0.

This implies
(s — (a1 + bu))aegfylx’ylegﬂeQ =0. (2.9)
From (2.6)-(2.9) we have
(s = (a11 4 b11))alimizyi 11 Bes = 0,
which implies
(s — (a11 + bi1))azBes =0,
for all o, 8 € I' and = € 9, which yields
(8 — (a11 + bn))Fi)ﬁFeg =0.
So (s — (a11 + b11))045m5(11 — e1) = 0 which implies
(e1vi(s — (a11 + bir)yier) ML (11 — e1) = 0.
It follows, from Theorem condition (iii), that s = a11 + b11. 1

LEMMA 2.11. M is additive on e;y19M = M1 + Myo.

Proof. The proof is the same as that of Martindale III (1969, Lemma 5)
and is included for the sake of completeness. In fact, let a11,b11 € 911 and
a2, b1o € Mis. Making use of Lemmas and we can see that

M ((a11 + a12) + (b1 + bi2)) = M ((a11 + b11) + (a12 + bi2))
= M(a11 + b11) + M(a12 + b12)
= M(a11) + M(b11) + M(ai2) + M (b12)
= M(a11 + a12) + M (b11 + b12).

holds true, as desired. |1
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Proof of Theorem [2.1]  Suppose that a,b € 9 and choose s € 9 such
that M (s) = M(a) + M(b). For all o € A, M is additive on e,7,9 because
of Lemma, Thus, for every r € 9, we have

M(eaVQTNS) = M(ea)¢(7a)M* 1(T)¢(/~L)M(S)
(ea)(ya) M1 (r)$ (1) (M (a) + M (b))
(€a) ) (1)

1

<

ea)d(Ya)M* 1 (r)p(11) M (a)
M (ea)p(ya)M*™"(r)p(p) M(b)

ea’YaT:ua) + M(ea’)/ozr:ub)

I
S EE+ £ K

(
(eaYarpa + eqyarub)
(eaVarp(a+1b)).
S0 eaYarus = eqvari(a + b). Therefore e,y MT (s — (a+ b)) = 0 holds for
every a € A. We then conclude that s = a + b from Theorem [2.1] condition
(ii). This shows that M is additive on 9.
To prove the additivity of M*, let xz,y € 9’. For a,b € M, by using the
additivity of M, we have
M (aX(M*(z) + M*(y)) ub) = M (aAM*(x)ub) + M (aAM*(y)ub)
= M(a)p(N)x(n) M (D)
+ M(a)p(N)yp(p)M(b)

= M(a)p(A)(x + y)o(p) M (b)

= M (aAM"*(z + y)ub).
It follows that aX(M*(z) + M*(y) — M*(z +y))pb = 0 holds for all a,b € 0N,

that is,
aA(M*(z) + M*(y) — M*(z +y))TM =0

holds for all a € 9, which implies

a)\(M*(m) + M*(y) — M*(z + y)) =0
holds for all a € 9, which implies

ML (M*(z) + M*(y) — M*(z +y)) =0

which forces M*(z +y) = M*(x) + M*(y) because of Theorem [2.1| conditions
(i) and (ii). This completes the proof. I
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COROLLARY 2.1. Let T, TV, 9 and 9 be additive groups such that 9
is a I'-ring and 9 is a I'-ring such that M is a prime I'-ring containing
a non-trivial ~y-idempotent (9 need not have an ~y-identity element), where
v €T. Suppose ea: T' x M — M, e): M x T’ — M two M-additive maps such
that es(y1,a) = a — e1mia, €y(a,v1) = a — ayier. Denote esaa = es(a,a),
acey = eh(a,a), liaa = ejaa + ezaa, aal; = ace; + aces and suppose
(ace2)Bb = aa(egfd) for all o, € T' and a,b € M. Then every surjective
elementary map (M, M*) of M x M’ is additive.

Proof. The result follows directly from Theorem and Theorem |

COROLLARY 2.2. Let I', IV, M and 9’ be additive groups such that M
is a I-ring and M’ is a I'-ring such that M is a prime I'-ring containing a
non-trivial v-idempotent and a ~y-unity element, where v € I'. Then every
surjective elementary map (M, M*) of M x M’ is additive.
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