11,499 research outputs found
What next? Rewilding as a radical future for the British countryside
Rewilding is an optimistic environmental agenda to reverse the loss of biodiversity and reconnect society with nature. This chapter explores Britain’s ecological history, back to the Last Interglacial before the arrival of modern humans, when the climate was similar to today, to analyse how conservationists can learn from the past to rewild the ecosystems of the present and prepare for an uncertain future. Because there is no single point in history that should or could be recreated, rewilding focuses on re-establishing naturally dynamic ecological processes that, through an appropriate sequence of species reintroductions, attempts to move the ecosystem towards a more appropriately biodiverse and functional state. A state that is self-sustaining in the present climate, and that projected for the near future. Specifically, this chapter explores a rewilding solution to conservation challenges associated with over-grazing, limited germination niche availability, and river dynamics: the reintroduction of wolves, wild boar, and beaver respectively. This sequence of reintroductions is suggested to be complimentary, each altering ecosystem dynamics to facilitate the return of the next. Evidence indicates wolves will reduce deer abundance and re-distribute browsing intensity promoting tree regeneration, particularly in riparian areas, increasing woodland availability to the more habitat-dependent wild boar and beaver. An important message behind rewilding is that a rich biodiversity with all guilds well represented, including the ones that polarize public opinion, such as large predators, are important components of ecosystem service rich and self-sustaining ecosystems, particularly in core areas
The design of a Space-borne multispectral canopy LiDAR to estimate global carbon stock and gross primary productivity
Understanding the dynamics of the global carbon cycle is one of the most challenging issues for the scientific community. The ability to measure the magnitude of terrestrial carbon sinks as well as monitoring the short and long term changes is vital for environmental decision making. Forests form a significant part of the terrestrial biosystem and understanding the global carbon cycle, Above Ground Biomass (AGB) and Gross Primary Productivity (GPP) are critical parameters. Current estimates of AGB and GPP are not adequate to support models of the global carbon cycle and more accurate estimates would improve predictions of the future and estimates of the likely behaviour of these sinks. Various vegetation indices have been proposed for the characterisation of forests including canopy height, canopy area, Normalised Difference Vegetation Index (NDVI) and Photochemical Reflectance Index (PRI). Both NDVI and PRI are obtained from a measure of reflectivity at specific wavelengths and have been estimated from passive measurements. The use of multi-spectral LiDAR to measure NDVI and PRI and their vertical distribution within the forest represents a significant improvement over current techniques. This paper describes an approach to the design of an advanced Multi-Spectral Canopy LiDAR, using four wavelengths for measuring the vertical profile of the canopy simultaneously. It is proposed that the instrument be placed on a satellite orbiting the Earth on a sun synchronous polar orbit to provide samples on a rectangular grid at an approximate separation of 1km with a suitable revisit frequency. The systems engineering concept design will be presented
Dive performance in a small-bodied, semi-aquatic mammal in the wild
Aquatic foraging is a fundamental component of the behavior of a number of small mammals, yet comprehensive observations of diving are often difficult to obtain under natural circumstances. Semiaquatic mammals, having evolved to exploit prey in both aquatic and terrestrial environments, are generally not as well adapted for diving (or for life in the water) as are fully aquatic species. Because dive ability also tends to increase with body size, small, semiaquatic mammals are presumed to have fairly limited dive ability. Nevertheless, diving plays an important role in food acquisition for many such species. We used time–depth recorders (TDRs) to measure and describe the dive performance of 9 female and 5 male free-living American mink (Neovison vison; body mass approximately 1 kg) on lowland rivers in the southern United Kingdom. We recorded dives up to 2.96 m deep (maximum depth X ¯ 5 1.82 m) and up to 57.9 s in duration (maximum duration X ¯ 5 37.2 s). Dive duration was approximately 40% of that predicted by allometry for all air-breathing diving vertebrates (as might be expected for a small, semiaquatic animal) but was twice as long as previously measured for mink in captivity. Mink performed up to 189 dives per day (X ¯ 5 35.7 dives/day), mostly during daylight, and spent a maximum of 38.4 minutes diving per day (X ¯ 5 7.6 min/day). Some individuals maintained particularly high diving rates over the coldest months, suggesting that the benefits of aquatic foraging in winter outweigh the costs of heat loss. We observed a number of very shallow dives (depth approximately 0.3 m) of particularly long duration (up to 30 s). The function of these dives is currently unknown, but possibilities include searching for prey, travelling, or avoidance of threats. There is only 1 other study of which we are aware that presents detailed measurements of dive performance in a small, shallow-diving, semiaquatic mammal.Fil: Harrington, Lauren. University of Oxford; Reino UnidoFil: Hays, Graeme C.. Swansea University; Reino UnidoFil: Fasola, Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas; ArgentinaFil: Harrington, Andrew L.. University of Oxford; Reino UnidoFil: Righton, David. No especifíca;Fil: Macdonald, David W.. University of Oxford; Reino Unid
The discovery of two spotted leopards (Panthera pardus) in Peninsular Malaysia
We discovered the presence of two individual spotted leopards Panthera pardus in Ulu Muda Forest Reserve, a previously under-researched selectively logged rainforest of Peninsular Malaysia. These findings are unexpected, because only two other studies have detected the spotted morph amongst many other melanistic leopards caught on camera traps in Peninsular Malaysia. We discuss the implications of our findings with respect to the prevalence of melanism among leopards in the region
Performance of an environmental test to detect Mycobacterium bovis infection in badger social groups
A study by Courtenay and others (2006) demonstrated that
the probability of detecting Mycobacterium bovis by PCR in
soil samples from the spoil heaps of main badger setts correlated
with the prevalence of excretion (infectiousness) of
captured badgers belonging to the social group. It has been
proposed that such a test could be used to target badger culling
to setts containing infectious animals (Anon 2007). This
short communication discusses the issues surrounding this
concept, with the intention of dispelling any misconceptions
among relevant stakeholders (farmers, policy makers and
conservationists)
Coming down from the trees: is terrestrial activity in Bornean orangutans natural or disturbance driven?
The orangutan is the world's largest arboreal mammal, and images of the red ape moving through the tropical forest canopy symbolise its typical arboreal behaviour. Records of terrestrial behaviour are scarce and often associated with habitat disturbance. We conducted a large-scale species-level analysis of ground-based camera-trapping data to evaluate the extent to which Bornean orangutans Pongo pygmaeus come down from the trees to travel terrestrially, and whether they are indeed forced to the ground primarily by anthropogenic forest disturbances. Although the degree of forest disturbance and canopy gap size influenced terrestriality, orangutans were recorded on the ground as frequently in heavily degraded habitats as in primary forests. Furthermore, all age-sex classes were recorded on the ground (flanged males more often). This suggests that terrestrial locomotion is part of the Bornean orangutan's natural behavioural repertoire to a much greater extent than previously thought, and is only modified by habitat disturbance. The capacity of orangutans to come down from the trees may increase their ability to cope with at least smaller-scale forest fragmentation, and to cross moderately open spaces in mosaic landscapes, although the extent of this versatility remains to be investigated
Spontaneous DC Current Generation in a Resistively Shunted Semiconductor Superlattice Driven by a TeraHertz Field
We study a resistively shunted semiconductor superlattice subject to a
high-frequency electric field. Using a balance equation approach that
incorporates the influence of the electric circuit, we determine numerically a
range of amplitude and frequency of the ac field for which a dc bias and
current are generated spontaneously and show that this region is likely
accessible to current experiments. Our simulations reveal that the Bloch
frequency corresponding to the spontaneous dc bias is approximately an integer
multiple of the ac field frequency.Comment: 8 pages, Revtex, 3 Postscript figure
Mind over matter: Perceptions behind the impact of jaguars on human livelihoods
In an investigation of perceptions of the conflicts between people and jaguars on the Amazon deforestation frontier and Pantanal, Brazil, we explored how perceptions of the impact of jaguars on livestock and on human safety vary with experience of jaguars (including reported livestock loss), region, place of residence, attitudes towards jaguars, knowledge of the species, and perceptions of changes in jaguar abundance and the regional economic situation. Livestock loss and threat to human safety were not the only predictors of the perceived conflict with jaguars. Livestock loss acted in combination with attitudes, knowledge and perceptions of the economic situation to determine how people perceive the impact jaguars have on their livelihoods. Attitudes and knowledge were influenced by age, gender and whether respondents lived in urban or rural areas. An experiment in which respondents were shown photographs of dead livestock, and asked to ascribe the cause of death, revealed an interaction between attitudes and knowledge: of respondents whose knowledge of the species was low, those with negative attitudes towards jaguars assigned a larger number of photographs to jaguar depredation. Our evidence suggests that attitudes and knowledge can affect the conclusions a rancher draws from finding the carcass of a cow, or even from noticing that a cow is missing. The owners of smaller holdings believed that depredation was more serious on neighboring properties than on their own, which suggests that their perceptions of conflict with jaguars were shaped primarily by what is heard from other people, and not by personal experience
Mitochondrial Phylogeography Illuminates the Origin of the Extinct Caspian Tiger and Its Relationship to the Amur Tiger
The Caspian tiger (Panthera tigris virgata) flourished in Central Asian riverine forest systems in a range disjunct from that of other tigers, but was driven to extinction in 1970 prior to a modern molecular evaluation. For over a century naturalists puzzled over the taxonomic validity, placement, and biogeographic origin of this enigmatic animal. Using ancient-DNA (aDNA) methodology, we generated composite mtDNA haplotypes from twenty wild Caspian tigers from throughout their historic range sampled from museum collections. We found that Caspian tigers carry a major mtDNA haplotype differing by only a single nucleotide from the monomorphic haplotype found across all contemporary Amur tigers (P. t. altaica). Phylogeographic analysis with extant tiger subspecies suggests that less than 10,000 years ago the Caspian/Amur tiger ancestor colonized Central Asia via the Gansu Corridor (Silk Road) from eastern China then subsequently traversed Siberia eastward to establish the Amur tiger in the Russian Far East. The conservation implications of these findings are far reaching, as the observed genetic depletion characteristic of modern Amur tigers likely reflects these founder migrations and therefore predates human influence. Also, due to their evolutionary propinquity, living Amur tigers offer an appropriate genetic source should reintroductions to the former range of the Caspian tiger be implemented
- …
