151 research outputs found

    Comparing Alliance in Two Cognitive-Behavioural Therapies for Adolescents With ADHD Using a Randomized Controlled Trial

    Get PDF
    Alliance is defined as the client-therapist bond and their ability to collaborate on therapeutic activities. Treatment for adolescents with ADHD is rarely studied in terms of alliance. In this study, two cognitive-behavioral treatments (CBT; one structured treatment aimed at planning skills and one less- structured solution-focused treatment, both delivered in the style of Motivational Interviewing) were compared with regard to alliance and alliance-outcome association. The influence of therapist competence on this alliance-outcome association was also evaluated. The alliance between 69 adolescents diagnosed with ADHD and their therapists was measured early in treatment, using the Therapy Process Observational Coding System for Child Psychotherapy– Alliance scale. Observer-rated therapist competence was measured using the Motivational Interviewing Treatment Integrity scale (version 3.1.1.). Outcome variables were the adolescents’ reduction in planning problems and ADHD symptoms. The alliance, and, more specifically, collaboration on therapeutic activities, was significantly higher for the more structured CBT (p = .04; moderate effect size). Alliance was not related to outcome in the more structured CBT, while the alliance was positively related to the reduction in planning problems in the less structured CBT. Finally, alliance was a significant mediator between therapist competence and treatment outcome for the less-structured CBT. The clarity and structure of CBT may help facilitate alliance formation for adolescents with ADHD who often have difficulty implementing structure themselves. Therapists may need to invest more in alliance formation in less structured CBT as the alliance affects outcome. Moreover, enhancing therapist competence in less structured CBT may help improve outcomes in less structured CBT, as therapist competence may impact outcome through alliance

    Infrared Magnitude-Redshift Relations for Luminous Radio Galaxies

    Get PDF
    Infrared magnitude-redshift relations for the 3CR and 6C samples of radio galaxies are presented for a wide range of plausible cosmological models, including those with non-zero cosmological constant OmegaLambda. Variations in the galaxy formation redshift, metallicity and star formation history are also considered. The results of the modelling are displayed in terms of magnitude differences between the models and no-evolution tracks, illustrating the amount of K-band evolution necessary to account for the observational data. Given a number of plausible assumptions, the results of these analyses suggest that: (i) cosmologies which predict T_0xH_0>1 (where T_0 denotes the current age of the universe) can be excluded; (ii) the star formation redshift should lie in the redshift interval 5<z<20, values towards the lower end of the range being preferred in cosmologies with larger values of T_0xH_0; (iii) the Einstein-de Sitter model provides a reasonable fit to the data; (iv) models with finite values of OmegaLambda can provide good agreement with the observations only if appropriate adjustments of other parameters such as the galaxy metallicities and star-formation histories are made. Without such modifications, even after accounting for stellar evolution, the high redshift radio galaxies are more luminous (ie. more massive) than those nearby in models with finite OmegaLambda, including the favoured model with Omega=0.3, OmegaLambda=0.7. For cosmological models with larger values of T_0xH_0, the conclusions are the same regardless of whether any adjustments are made or not. The implications of these results for cosmology and models of galaxy formation are discussed.Comment: 14 pages, LaTeX, 9 figures, accepted for publication in MNRAS. Replacement corrects some annoying typo

    OPTIma:a tracking solution for proton computed tomography in high proton flux environments

    Get PDF
    Currently there is a large discrepancy between the currents that are used for treatments in proton beam therapy facilities and the ultra low beam currents required for many proton CT imaging systems. Here we provide details of the OPTIma silicon strip based tracking system, which has been designed for performing proton CT imaging in conditions closer to the high proton flux environments of modern spot scanning treatment facilities. Details on the physical design, sensor testing, modelling, and track reconstruction are provided along with Monte-Carlo simulation studies of the expected performance for proton beam currents of up to 50 pA at the nozzle when using a σ = ∌10 mm spot scanning cyclotron system. Using a detailed simulation of the proposed OPTIma system, a discrepancy of less than 1% on the Relative Stopping Power is found for various tissues when embedded within a 150 mm diameter Perspex sphere. It is found that by accepting up to 7 protons per bunch it is possible to operate at cyclotron beam currents up to 5 times higher than would be possible with a single proton based readout, significantly reducing the total beam time required to produce an image, while also reducing the discrepancy between the beam currents required for treatment and those used for proton CT

    Agreement of Clinician-Administered and Modified Parent-Administered House-Brackmann Scales in Children with Bell's Palsy

    Get PDF
    Objective. Currently there is no parent administered scale for facial nerve function in children. We set out to assess the agreement between a newly developed parent-administered modified version of the House-Brackmann (HB) scale and the standard clinician-administered HB scale in children with Bell's palsy. Study Design. Secondary analysis of a triple-blind, randomized, placebo-controlled trial of corticosteroids to treat idiopathic facial paralysis (Bell's palsy) in children (6 months to <18 years). Setting. Multicenter study at pediatric hospitals with recruitment in emergency departments. Methods. Children were recruited within 72 hours of symptom onset and assessed using the clinicianadministered and the parent-administered modified HB scales at baseline, and at 1, 3, and 6 months until recovered. Agreement between the 2 scales was assessed using intraclass coefficient (ICC) and a Bland-Altman plot. Results. Data were available for 174 of the 187 children randomized from at least 1 study time point. The mean ICC between clinician and parent HB scores across all time points was 0.88 (95% confidence interval, CI: 0.86, 0.90). The ICC for the data collected at baseline was 0.53 (95% CI: 0.43, 0.64), at 1 month was 0.88 (95% CI: 0.84, 0.91), at 3 months was 0.80 (95% CI: 0.71, 0.87) and at 6 months was 0.73 (95% CI: 0.47, 0.89). A Bland-Altman plot indicated a mean difference between the 2 scores (clinician-reported minus parent-reported) of only −0.07 (95% limits of agreement −1.37 to 1.23). Conclusion. There was good agreement between the modified parent-administered and the clinician-administered HB scales.Franz E. Babl, Nitaa Eapen, David Herd, Meredith L. Borland, Amit Kochar, Michael Zhang, Ed Oakley, Sandy M. Hopper, Robert G. Berkowitz, Catherine L. Wilson, Amanda Williams, Mark T. Mackay, Katherine J. Lee, Stephen Hearps, and the PREDICT (Paediatric Research in Emergency Departments International Collaborative) research networ

    Looking forward through the past: identification of 50 priority research questions in palaeoecology

    Get PDF
    1. Priority question exercises are becoming an increasingly common tool to frame future agendas in conservation and ecological science. They are an effective way to identify research foci that advance the field and that also have high policy and conservation relevance. 2. To date, there has been no coherent synthesis of key questions and priority research areas for palaeoecology, which combines biological, geochemical and molecular techniques in order to reconstruct past ecological and environmental systems on time-scales from decades to millions of years. 3. We adapted a well-established methodology to identify 50 priority research questions in palaeoecology. Using a set of criteria designed to identify realistic and achievable research goals, we selected questions from a pool submitted by the international palaeoecology research community and relevant policy practitioners. 4. The integration of online participation, both before and during the workshop, increased international engagement in question selection. 5. The questions selected are structured around six themes: human–environment interactions in the Anthropocene; biodiversity, conservation and novel ecosystems; biodiversity over long time-scales; ecosystem processes and biogeochemical cycling; comparing, combining and synthesizing information from multiple records; and new developments in palaeoecology. 6. Future opportunities in palaeoecology are related to improved incorporation of uncertainty into reconstructions, an enhanced understanding of ecological and evolutionary dynamics and processes and the continued application of long-term data for better-informed landscape management

    Measurement of prompt D0^{0} and D‟\overline{D}0^{0} meson azimuthal anisotropy and search for strong electric fields in PbPb collisions at root SNN\sqrt{S_{NN}} = 5.02 TeV

    Get PDF
    The strong Coulomb field created in ultrarelativistic heavy ion collisions is expected to produce a rapiditydependent difference (Av2) in the second Fourier coefficient of the azimuthal distribution (elliptic flow, v2) between D0 (uc) and D0 (uc) mesons. Motivated by the search for evidence of this field, the CMS detector at the LHC is used to perform the first measurement of Av2. The rapidity-averaged value is found to be (Av2) = 0.001 ? 0.001 (stat)? 0.003 (syst) in PbPb collisions at ?sNN = 5.02 TeV. In addition, the influence of the collision geometry is explored by measuring the D0 and D0mesons v2 and triangular flow coefficient (v3) as functions of rapidity, transverse momentum (pT), and event centrality (a measure of the overlap of the two Pb nuclei). A clear centrality dependence of prompt D0 meson v2 values is observed, while the v3 is largely independent of centrality. These trends are consistent with expectations of flow driven by the initial-state geometry. ? 2021 The Author. Published by Elsevier B.V. This is an open access article under the CC BY licens

    Measurement of the CP-violating phase ϕs_{s} in the B0^{0}s_{s}→J/ψ φ(1020) →ΌâșΌ⁻KâșK⁻ channel in proton-proton collisions at √s = 13 TeV

    Get PDF

    Observation of electroweak production of Wγ with two jets in proton-proton collisions at √s = 13 TeV

    Get PDF
    A first observation is presented for the electroweak production of a W boson, a photon, and two jets in proton-proton collisions. The W boson decays are selected by requiring one identified electron or muon and an imbalance in transverse momentum. The two jets are required to have a high dijet mass and a large separation in pseudorapidity. The measurement is based on data collected with the CMS detector at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb−1^{-1}. The observed (expected) significance for this process is 4.9 (4.6) standard deviations. After combining with previously reported CMS results at 8 TeV, the observed (expected) significance is 5.3 (4.8) standard deviations. The cross section for the electroweak Wγjj_{γjj} production in a restricted fiducial region is measured as 20.4 +/- 4.5 fb and the total cross section for Wγ_{γ} production in association with 2 jets in the same fiducial region is 108 +/- 16 fb. All results are in good agreement with recent theoretical predictions. Constraints are placed on anomalous quartic gauge couplings in terms of dimension-8 effective field theory operators

    Statistical strategies for avoiding false discoveries in metabolomics and related experiments

    Full text link
    • 

    corecore