84 research outputs found
pi-NN Coupling Constants from NN Elastic Data between 210 and 800 Mev
High partial waves for and elastic scattering are examined
critically from 210 to 800 MeV. Non-OPE contributions are compared with
predictions from theory. There are some discrepancies, but sufficient agreement
that values of the coupling constants for exchange
and for charged exchange can be derived. Results are and , where the first error is statistical and the
second is an estimate of the likely systematic error, arising mostly from
uncertainties in the normalisation of total cross sections and
.Comment: 21 pages of LaTeX, UI-NTH-940
Stellar activity cycles and contribution of the deep layers knowledge
It is believed that magnetic activity on the Sun and solar-type stars are
tightly related to the dynamo process driven by the interaction between
rotation, convection, and magnetic field. However, the detailed mechanisms of
this process are still incompletely understood. Many questions remain
unanswered, e.g.: why some stars are more active than others?; why some stars
have a flat activity?; why is there a Maunder minimum?; are all the cycles
regular? A large number of prox- ies are typically used to study the magnetic
activity of stars as we cannot resolve stellar discs. Recently, it was shown
that asteroseismology can also be used to study stellar activity, making it an
even more powerful tool. If short cycles are not so un- common, we expect to
detect many of them with missions such as CoRoT, Kepler, and possibly the PLATO
mission. We will review some of the latest results obtained with spectroscopic
measurements. We will show how asteroseismology can help us to better
understand the complex process of dynamo and illustrate how the CoRoT and
Kepler missions are revolutionizing our knowledge on stellar activity. A new
window is being opened over our understanding of the magnetic variability of
stars.Comment: 7 pages. To appear in Astrophysics and Space Science Proceedings
series of the 20th Stellar pulsation conference held in Granada (Spain) from
6 to 10 September 2011
Cross-ancestry genome-wide association analysis of corneal thickness strengthens link between complex and Mendelian eye diseases
Central corneal thickness (CCT) is a highly heritable trait associated with complex eye diseases such as keratoconus and glaucoma. We perform a genome-wide association meta-analysis of CCT and identify 19 novel regions. In addition to adding support for known connective tissue-related pathways, pathway analyses uncover previously unreported gene sets. Remarkably, >20% of the CCT-loci are near or within Mendelian disorder genes. These included FBN1, ADAMTS2 and TGFB2 which associate with connective tissue disorders (Marfan, Ehlers-Danlos and Loeys-Dietz syndromes), and the LUM-DCN-KERA gene complex involved in myopia, corneal dystrophies and cornea plana. Using index CCT-increasing variants, we find a significant inverse correlation in effect sizes between CCT and keratoconus (r =-0.62, P = 5.30 × 10-5) but not between CCT and primary open-angle glaucoma (r =-0.17, P = 0.2). Our findings provide evidence for shared genetic influences between CCT and keratoconus, and implicate candidate genes acting in collagen and extracellular matrix regulation
Multi-trait genome-wide association study identifies new loci associated with optic disc parameters
A new avenue of mining published genome-wide association studies includes the joint analysis of related traits. The power of this approach depends on the genetic correlation of traits, which reflects the number of pleiotropic loci, i.e. genetic loci influencing multiple traits. Here, we applied new meta-analyses of optic nerve head (ONH) related traits implicated in primary open-angle glaucoma (POAG); intraocular pressure and central corneal thickness using Haplotype reference consortium imputations. We performed a multi-trait analysis of ONH parameters cup area, disc area and vertical cup-disc ratio. We uncover new variants; rs11158547 in PPP1R36-PLEKHG3 and rs1028727 near SERPINE3 at genome-wide significance that replicate in independent Asian cohorts imputed to 1000 Genomes. At this point, validation of these variants in POAG cohorts is hampered by the high degree of heterogeneity. Our results show that multi-trait analysis is a valid approach to identify novel pleiotropic variants for ONH
Recommended from our members
Carrier-free C-labeled catecholamines in nuclear medicine and biochemical research
The catecholamines, dopamine, norepinephrine, and epinephrine, are synthesized and secreted by tissues such as brain, sympathetic nerve endings, and chromaffin cells. Dopamine and norepinephrine are primarily neurotransmitters while epinephrine functions mainly as a hormone. The biosynthesis of the catecholamines from tyrosine is reviewed. Abnormalities in the quantities and metabolism of these compounds are associated with many pathological conditions such as hypertension, Parkinsonism, and chromaffin tissue tumors. Rapid synthetic methods (for the preparation off)/sup 11/C-labeled catecholamines have been developed. The potential use of these labeled catecholamines as scanning agents for the adrenal glands and heart myocardium was evaluated in dogs. (CH
- …