923 research outputs found
Nucleon-nucleon momentum correlation function for light nuclei
Nucleon-nucleon momentum correlation function have been presented for nuclear
reactions with neutron-rich or proton-rich projectiles using a nuclear
transport theory, namely Isospin-Dependent Quantum Molecular Dynamics model.
The relationship between the binding energy of projectiles and the strength of
proton-neutron correlation function at small relative momentum has been
explored, while proton-proton correlation function shows its sensitivity to the
proton density distribution. Those results show that nucleon-nucleon
correlation function is useful to reflect some features of the neutron- or
proton-halo nuclei and therefore provide a potential tool for the studies of
radioactive beam physics.Comment: Talk given at the 18th International IUPAP Conference on Few-Body
Problems in Physics (FB18), Santos, Brasil, August 21-26, 2006. To appear in
Nucl. Phys.
Neutron/proton ratio of nucleon emissions as a probe of neutron skin
The dependence between neutron-to-proton yield ratio () and neutron
skin thickness () in neutron-rich projectile induced reactions is
investigated within the framework of the Isospin-Dependent Quantum Molecular
Dynamics (IQMD) model. The density distribution of the Droplet model is
embedded in the initialization of the neutron and proton densities in the
present IQMD model. By adjusting the diffuseness parameter of neutron density
in the Droplet model for the projectile, the relationship between the neutron
skin thickness and the corresponding in the collisions is obtained.
The results show strong linear correlation between and
for neutron-rich Ca and Ni isotopes. It is suggested that may be used
as an experimental observable to extract for neutron-rich nuclei,
which is very significant to the study of the nuclear structure of exotic
nuclei and the equation of state (EOS) of asymmetric nuclear matter.Comment: 7 pages, 5 figures; accepted by Phys. Lett.
Distinct song parts of the endemic marsh grassbird of China vary with latitude and climate among migratory and sedentary populations
Article / Letter to editorInstituut Biologie Leide
On the String Consensus Problem and the Manhattan Sequence Consensus Problem
In the Manhattan Sequence Consensus problem (MSC problem) we are given
integer sequences, each of length , and we are to find an integer sequence
of length (called a consensus sequence), such that the maximum
Manhattan distance of from each of the input sequences is minimized. For
binary sequences Manhattan distance coincides with Hamming distance, hence in
this case the string consensus problem (also called string center problem or
closest string problem) is a special case of MSC. Our main result is a
practically efficient -time algorithm solving MSC for sequences.
Practicality of our algorithms has been verified experimentally. It improves
upon the quadratic algorithm by Amir et al.\ (SPIRE 2012) for string consensus
problem for binary strings. Similarly as in Amir's algorithm we use a
column-based framework. We replace the implied general integer linear
programming by its easy special cases, due to combinatorial properties of the
MSC for . We also show that for a general parameter any instance
can be reduced in linear time to a kernel of size , so the problem is
fixed-parameter tractable. Nevertheless, for this is still too large
for any naive solution to be feasible in practice.Comment: accepted to SPIRE 201
Dynamic surface scaling behavior of isotropic Heisenberg ferromagnets
The effects of free surfaces on the dynamic critical behavior of isotropic
Heisenberg ferromagnets are studied via phenomenological scaling theory,
field-theoretic renormalization group tools, and high-precision computer
simulations. An appropriate semi-infinite extension of the stochastic model J
is constructed, the boundary terms of the associated dynamic field theory are
identified, its renormalization in d <= 6 dimensions is clarified, and the
boundary conditions it satisfies are given. Scaling laws are derived which
relate the critical indices of the dynamic and static infrared singularities of
surface quantities to familiar static bulk and surface exponents. Accurate
computer-simulation data are presented for the dynamic surface structure
factor; these are in conformity with the predicted scaling behavior and could
be checked by appropriate scattering experiments.Comment: 9 pages, 2 figure
Scaling of anisotropy flows in intermediate energy heavy ion collisions
Anisotropic flows (, and ) of light nuclear clusters are
studied by a nucleonic transport model in intermediate energy heavy ion
collisions. The number-of-nucleon scalings of the directed flow () and
elliptic flow () are demonstrated for light nuclear clusters. Moreover,
the ratios of of nuclear clusters show a constant value of 1/2
regardless of the transverse momentum. The above phenomena can be understood by
the coalescence mechanism in nucleonic level and are worthy to be explored in
experiments.Comment: Invited talk at "IX International Conference on Nucleus-Nucleus
Collisions", Rio de Janeiro, Aug 28- Sept 1, 2006; to appear on the
proceeding issue in Nuclear Physics
Cyanobacteria in eutrophic waters benefit from rising atmospheric CO2 concentrations
Rising atmospheric carbon dioxide (CO2) may stimulate the proliferation of cyanobacteria. To investigate the possible physiological responses of cyanobacteria to elevated CO2 at different nutrient levels, Microcystis aeruginosa were exposed to different concentrations of CO2 (400, 1100, and 2200 ppm) under two nutrient regimes (i.e., in nutrient-rich and nutrient-poor media). The results indicated that M. aeruginosa differed in its responses to elevated atmospheric CO2 at different nutrient levels. The light utilization efficiency and photoprotection of photosystem II were improved by elevated CO2, particularly when cells were supplied with abundant nutrients. In nutrient-poor media, both total organic carbon and the polysaccharide/protein ratio of the extracellular polymeric substance increased with elevated CO2, accompanied by high cellular carbon/nitrogen ratios. Besides, cells growing with fewer nutrients were more prone to suffer intracellular acidification with elevated CO2 than those growing with abundant nutrients. Nonetheless, alkaline phosphate activity of cyanobacteria was improved by high CO2, provided that reduced pH was in the optimum range for alkaline phosphate activity. Nitrate reductase activity was inhibited by elevated CO2 regardless of nutrient levels, leading to a reduced nitrate uptake. These changes indicate that the biogeochemical cycling of nutrients would be affected by higher atmospheric CO2 conditions. Overall, cyanobacteria in eutrophic waters may benefit more than in oligotrophic waters from rising atmospheric CO2 concentrations, and evaluations of the influence of rising atmospheric CO2 on algae should account for the nutrient level of the ecosystem
An Experimental Study of the Dynamic Split Tension Properties of Reinforced Concrete
Dynamic split tensile tests of reinforced concrete were carried out using the split Hopkinson pressure bar experimental technique to determine the failure modes of reinforced concrete at different strain rates, and the effect of reinforcement ratio and reinforcement layouts on the dynamic performance. The specimens with nine reinforcement ratios were used in the tests. Experimental results show that the tensile strength of reinforced concrete exhibits a critical strain rate, beyond which larger increases in dynamic strength of specimens occur. The dynamic split tension strength of reinforced concrete is demonstrated to be greater than the plain concrete with the same strength grade over the range of tested strain rate. The results also indicate that the dynamic split tension strength of specimens enhances with the increase of reinforcement ratio. These findings are instrumental to guide the structural design of reinforced concrete in engineering constructions
Thermal Bremsstrahlung photons probing the nuclear caloric curve
Hard-photon (E 30 MeV) emission from second-chance
nucleon-nucleon Bremsstrahlung collisions in intermediate energy heavy-ion
reactions is studied employing a realistic thermal model. Photon spectra and
yields measured in several nucleus-nucleus reactions are consistent with an
emission from hot nuclear systems with temperatures 4 - 7 MeV. The
corresponding caloric curve in the region of excitation energies
3{\it A} - 8{\it A} MeV shows lower values of than
those expected for a Fermi fluid.Comment: 13 pages, 3 figures. To appear in Physics Letters
Effect of Intensity Modulator Extinction on Practical Quantum Key Distribution System
We study how the imperfection of intensity modulator effects on the security
of a practical quantum key distribution system. The extinction ratio of the
realistic intensity modulator is considered in our security analysis. We show
that the secret key rate increases, under the practical assumption that the
indeterminable noise introduced by the imperfect intensity modulator can not be
controlled by the eavesdropper.Comment: 6 pages, 5 figures. EPJD accepte
- …