645 research outputs found

    Komar energy and Smarr formula for noncommutative Schwarzschild black hole

    Full text link
    We calculate the Komar energy EE for a noncommutative Schwarzschild black hole. A deformation from the conventional identity E=2STHE=2ST_H is found in the next to leading order computation in the noncommutative parameter θ\theta (i.e. O(θe−M2/θ)\mathcal{O}(\sqrt{\theta}e^{-M^2/\theta})) which is also consistent with the fact that the area law now breaks down. This deformation yields a nonvanishing Komar energy at the extremal point TH=0T_{H}=0 of these black holes. We then work out the Smarr formula, clearly elaborating the differences from the standard result M=2STHM=2ST_H, where the mass (MM) of the black hole is identified with the asymptotic limit of the Komar energy. Similar conclusions are also shown to hold for a deSitter--Schwarzschild geometry.Comment: 5 pages Late

    New physics, the cosmic ray spectrum knee, and pppp cross section measurements

    Full text link
    We explore the possibility that a new physics interaction can provide an explanation for the knee just above 10610^6 GeV in the cosmic ray spectrum. We model the new physics modifications to the total proton-proton cross section with an incoherent term that allows for missing energy above the scale of new physics. We add the constraint that the new physics must also be consistent with published pppp cross section measurements, using cosmic ray observations, an order of magnitude and more above the knee. We find that the rise in cross section required at energies above the knee is radical. The increase in cross section suggests that it may be more appropriate to treat the scattering process in the black disc limit at such high energies. In this case there may be no clean separation between the standard model and new physics contributions to the total cross section. We model the missing energy in this limit and find a good fit to the Tibet III cosmic ray flux data. We comment on testing the new physics proposal for the cosmic ray knee at the Large Hadron Collider.Comment: 17 pages, 4 figure

    The Hamiltonian formulation of General Relativity: myths and reality

    Full text link
    A conventional wisdom often perpetuated in the literature states that: (i) a 3+1 decomposition of space-time into space and time is synonymous with the canonical treatment and this decomposition is essential for any Hamiltonian formulation of General Relativity (GR); (ii) the canonical treatment unavoidably breaks the symmetry between space and time in GR and the resulting algebra of constraints is not the algebra of four-dimensional diffeomorphism; (iii) according to some authors this algebra allows one to derive only spatial diffeomorphism or, according to others, a specific field-dependent and non-covariant four-dimensional diffeomorphism; (iv) the analyses of Dirac [Proc. Roy. Soc. A 246 (1958) 333] and of ADM [Arnowitt, Deser and Misner, in "Gravitation: An Introduction to Current Research" (1962) 227] of the canonical structure of GR are equivalent. We provide some general reasons why these statements should be questioned. Points (i-iii) have been shown to be incorrect in [Kiriushcheva et al., Phys. Lett. A 372 (2008) 5101] and now we thoroughly re-examine all steps of the Dirac Hamiltonian formulation of GR. We show that points (i-iii) above cannot be attributed to the Dirac Hamiltonian formulation of GR. We also demonstrate that ADM and Dirac formulations are related by a transformation of phase-space variables from the metric gμνg_{\mu\nu} to lapse and shift functions and the three-metric gkmg_{km}, which is not canonical. This proves that point (iv) is incorrect. Points (i-iii) are mere consequences of using a non-canonical change of variables and are not an intrinsic property of either the Hamilton-Dirac approach to constrained systems or Einstein's theory itself.Comment: References are added and updated, Introduction is extended, Subsection 3.5 is added, 83 pages; corresponds to the published versio

    Global Search for New Physics with 2.0/fb at CDF

    Get PDF
    Data collected in Run II of the Fermilab Tevatron are searched for indications of new electroweak-scale physics. Rather than focusing on particular new physics scenarios, CDF data are analyzed for discrepancies with the standard model prediction. A model-independent approach (Vista) considers gross features of the data, and is sensitive to new large cross-section physics. Further sensitivity to new physics is provided by two additional algorithms: a Bump Hunter searches invariant mass distributions for "bumps" that could indicate resonant production of new particles; and the Sleuth procedure scans for data excesses at large summed transverse momentum. This combined global search for new physics in 2.0/fb of ppbar collisions at sqrt(s)=1.96 TeV reveals no indication of physics beyond the standard model.Comment: 8 pages, 7 figures. Final version which appeared in Physical Review D Rapid Communication

    Observation of Orbitally Excited B_s Mesons

    Get PDF
    We report the first observation of two narrow resonances consistent with states of orbitally excited (L=1) B_s mesons using 1 fb^{-1} of ppbar collisions at sqrt{s} = 1.96 TeV collected with the CDF II detector at the Fermilab Tevatron. We use two-body decays into K^- and B^+ mesons reconstructed as B^+ \to J/\psi K^+, J/\psi \to \mu^+ \mu^- or B^+ \to \bar{D}^0 \pi^+, \bar{D}^0 \to K^+ \pi^-. We deduce the masses of the two states to be m(B_{s1}) = 5829.4 +- 0.7 MeV/c^2 and m(B_{s2}^*) = 5839.7 +- 0.7 MeV/c^2.Comment: Version accepted and published by Phys. Rev. Let

    Assessing the associations between known genetic variants and substance use in people with HIV in the United States

    Get PDF
    Background The prevalence of substance use in people with HIV (PWH) in the United States is higher than in the general population and is an important driver of HIV-related outcomes. We sought to assess if previously identified genetic associations that contribute to substance use are also observed in a population of PWH. Methods We performed genome-wide association studies (GWAS) of alcohol, smoking, and cannabis use phenotypes in a multi-ancestry population of 7,542 PWH from the Center for AIDS Research Network of Integrated Clinical Systems (CNICS). We conducted multi-ancestry GWAS for individuals of African (n = 3,748), Admixed American (n = 1,334), and European (n = 2,460) ancestry. Phenotype data were self-reported and collected using patient reported outcomes (PROs) and three questions from AUDIT-C, an alcohol screening tool. We analyzed nine phenotypes: 1) frequency of alcohol consumption, 2) typical number of drinks on a day when drinking alcohol, 3) frequency of five or more alcoholic drinks in a 30-day period, 4) smoking initiation, 5) smoking cessation, 6) cigarettes per day, 7) cannabis use initiation, 8) cannabis use cessation, 9) frequency of cannabis use during the previous 30 days. For each phenotype we considered a) variants previously identified as associated with a substance use trait and b) novel associations. Results We observed evidence for effects of previously reported single nucleotide polymorphisms (SNPs) related to alcohol (rs1229984, p = 0.001), tobacco (rs11783093, p = 2.22E-4), and cannabis use (rs2875907, p = 0.005). We also report two novel loci (19p13.2, p = 1.3E-8; and 20p11.21, p = 2.1E-8) associated with cannabis use cessation. Conclusions Our analyses contribute to understanding the genetic bases of substance use in a population with relatively higher rates of use compared to the general population

    Biomedical and therapeutic applications of biosurfactants

    Get PDF
    During the last years, several applications of biosurfactants with medical purposes have been reported. Biosurfactants are considered relevant molecules for applications in combating many diseases and as therapeutic agents due to their antibacterial, antifungal and antiviral activities. Furthermore, their role as anti-adhesive agents against several pathogens illustrate their utility as suitable anti-adhesive coating agents for medical insertional materials leading to a reduction of a large number of hospital infections without the use of synthetic drugs and chemicals. Biomedical and therapeutic perspectives of biosurfactants applications are presented and discussed in this chapter
    • …
    corecore