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Abstract

Background

The prevalence of substance use in people with HIV (PWH) in the United States is higher

than in the general population and is an important driver of HIV-related outcomes. We

sought to assess if previously identified genetic associations that contribute to substance

use are also observed in a population of PWH.

Methods

We performed genome-wide association studies (GWAS) of alcohol, smoking, and canna-

bis use phenotypes in a multi-ancestry population of 7,542 PWH from the Center for AIDS

Research Network of Integrated Clinical Systems (CNICS). We conducted multi-ancestry

GWAS for individuals of African (n = 3,748), Admixed American (n = 1,334), and European

(n = 2,460) ancestry. Phenotype data were self-reported and collected using patient

reported outcomes (PROs) and three questions from AUDIT-C, an alcohol screening tool.

We analyzed nine phenotypes: 1) frequency of alcohol consumption, 2) typical number of

drinks on a day when drinking alcohol, 3) frequency of five or more alcoholic drinks in a 30-
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day period, 4) smoking initiation, 5) smoking cessation, 6) cigarettes per day, 7) cannabis

use initiation, 8) cannabis use cessation, 9) frequency of cannabis use during the previous

30 days. For each phenotype we considered a) variants previously identified as associated

with a substance use trait and b) novel associations.

Results

We observed evidence for effects of previously reported single nucleotide polymorphisms

(SNPs) related to alcohol (rs1229984, p = 0.001), tobacco (rs11783093, p = 2.22E-4), and

cannabis use (rs2875907, p = 0.005). We also report two novel loci (19p13.2, p = 1.3E-8;

and 20p11.21, p = 2.1E-8) associated with cannabis use cessation.

Conclusions

Our analyses contribute to understanding the genetic bases of substance use in a popula-

tion with relatively higher rates of use compared to the general population.

Introduction

Substance use is both a risk factor for acquiring HIV and a prevalent behavior among people

with HIV (PWH) [1]. It is associated with poorer outcomes along the HIV Care Cascade

including delayed initiation of and reduced adherence to antiretroviral therapy (ART),

increased risks of HIV transmission and progression, and increased risk of adverse HIV-asso-

ciated outcomes[1–5]. Over the last 25 years there has been a decline in HIV-related morbidity

and mortality which has been attributed to ART allowing most PWH to live lifespans similar

to those of the general population [6, 7]. While ~90% of PWH now achieve an undetectable

viral load [3], substance use is one of the challenges impacting many of the 10% who have

detectable viral loads.

In the general population, more than 400 genetic loci have been identified as influencing

tobacco and alcohol use phenotypes, including initiation, cessation, and frequency of con-

sumption [8]. Single nucleotide polymorphism (SNP)-based heritability estimates based on up

to 1.2 million individuals range from 4% for number of alcoholic drinks per week to 8% for

smoking initiation and number of cigarettes per day [8]. Substance use phenotypes have been

shown to be genetically correlated [8, 9], with 60% shared heritability for lifetime cannabis and

tobacco use, 36% shared heritability for lifetime cannabis and drinks per week, and 34% shared

heritability for smoking initiation and drinks per week. However, previous genome-wide asso-

ciation studies (GWAS) of lifetime cannabis use reported only seven independent loci and a

SNP-based heritability estimate of 11% [9, 10]. Additionally, previous work on the genetics of

cannabis was limited to only a single binary phenotype (never/ever) and did not assess cessa-

tion or frequency of cannabis use.

Most previous research on the intersection of substance use and HIV has been conducted

in relatively small samples or select groups, creating a gap in understanding the generalizability

in PWH [11]. Most genetic association studies among PWH have used candidate gene

approaches or focused on pharmacogenomics related to drug metabolism and adverse events.

Genome-wide data in combination with comprehensive clinical and self-reported data in the

Centers for AIDS Research Network of Integrated Clinical Systems (CNICS) cohort allow for
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investigations into the genetic contribution to outcomes relevant to the aging population of

PWH.

It is important to understand the interplay between genetic predisposition, substance use,

HIV, and long-term consequences of HIV infection. In this work, we describe methods for

harmonizing and analyzing genotype data across a diverse population of PWH. We then uti-

lized patient reported outcomes (PROs) collected at baseline visits in CNICS to define several

substance-related phenotypes, and used these along with genome-wide genetic data to conduct

genetic association studies of substance use. We compared our findings to previously pub-

lished GWAS findings and identified two novel loci for cannabis-related outcomes.

Methods

Population: CNICS cohort

We conducted this study among PWH in the CNICS cohort [12], a well-characterized longitu-

dinal observational cohort of PWH who enrolled in care at eight geographically distinct HIV

clinics in the US from January 1995 through June 2020 at which time the data was accessed

(http://www.uab.edu/cnics/). CNICS incorporates new PWH as they enter care ensuring rele-

vance to modern HIV care. Patients are followed as part of routine clinical care. CNICS is

diverse in terms of sex, self-reported race/ethnicity and geography, with 18% women, 44%

White, 38% Black, and 12% Hispanic, and eight different clinic sites across the country.

Reflecting an aging population of PWH, half of CNICS participants are now 50 years of age or

older.

Data: CNICS DATA repository

The CNICS data repository integrates comprehensive longitudinal data from outpatient and

inpatient encounters [12]. It captures standardized HIV-related information collected at

enrollment (initial clinic visit), sociodemographic, clinical, medication, and laboratory data

from each site’s electronic health record and other institutional data sources. Invited partici-

pants complete the CNICS clinical assessment of PROs on touch-screen tablets at routine

clinic visits every ~4–6 months [13, 14]. Participants who are medically unstable, appear intox-

icated, have a cognitive impairment, or do not speak English or Spanish are not asked to com-

plete the clinical assessment. The clinical assessment was initiated at the first site in 2007 with

a new site initiating it each year or two until 2018, when all eight sites were completing clinical

assessments as part of routine care visits. Most recently, Amharic has been added as an addi-

tional language and several sites also added remote options for participants completing their

clinic appointments via telehealth in response to the COVID-19 pandemic. CNICS partici-

pants have completed >103,000 clinical assessments to date. The clinical assessment includes

measures of smoking, alcohol, (Alcohol Use Disorders Identification Test [AUDIT/AUDIT-C]

[15, 16]), and drug use (MINI International Neuropsychiatric Interview & Alcohol, Smoking

and Substance Involvement Screening Test [ASSIST] [17]), and other domains.

CNICS participants were included in this study if they had genome-wide genetic data avail-

able and they had completed one or more clinical assessments. Institutional review boards at

each site approved the study protocol, and all study participants provided informed consent to

be included in the cohort.

Substance use phenotypes. Substance use information was captured using the CNICS

clinical assessment of PROs. Initial assessment was used for participants who had completed

the PRO multiple times.

Alcohol use. The AUDIT-C is a 3-item instrument on alcohol consumption and frequency

designed to screen for hazardous alcohol use: We analyzed: 1) alcohol use frequency
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standardized to days of use in the last 30 days, 2) estimated number of drinks per week, 3) fre-

quency of binge drinking, defined as five or more drinks on a single occasion for men and 4 or

more for women, standardized to days of use in the last 30 days. All alcohol consumption anal-

yses were restricted to participants who reported consuming alcohol (i.e., excluding those who

reported never drinking).

Tobacco use. CNICS participants self-reported history of never, former, or current smoking

and also answered items regarding duration and quantity. We analyzed three smoking pheno-

types: 1) smoking initiation categorized as never versus former or current smoking; 2) smok-

ing cessation categorized as former versus current smoking, excluding those who never

smoked from analyses; and 3) among those who reported having ever smoked, the number of

cigarettes per day.

Cannabis use. For cannabis use we analyzed: 1) cannabis use initiation, 2) cannabis use ces-

sation, and 3) among ever cannabis users, frequency of use in the past three months standard-

ized to days of use in the last 30 days.

For all substances, measures of frequency were recategorized as ordered factored variables

(S1A–S1I Fig).

Genotyping and imputation

Overview. We applied an analysis framework for conducting GWAS in multiple ancestry

populations as described in S1 Fig by Peterson et al. [18]. In brief, we first conducted basic

quality control analyses for participants and SNPs. We then assigned each individual to a

global ancestry group (African (AFR), Admixed American (AMR), East Asian (EAS), Euro-

pean (EUR), South Asian (SAS)) using the 1000 Genomes Project Consortium (IKGP) [19]

populations as reference (see details below). Due to small sample sizes of EAS (n = 97) and

SAS (n = 61), we excluded these individuals for future analyses. After additional quality con-

trol, data were then imputed using the multi-ancestry Trans-Omics for Precision Medicine

(TOPMed) reference panel [20]. Details regarding number of samples and variant inclusion

and exclusions are included in Fig 1.

Genotyping Arrays and quality control. Genotyping was done using the Illumina Multi-

ethnic Global Array (MEGA, n = 3,675), the Expanded version (MEGAEx, n = 4,942), and

Infinium Multi-Ethnic Global-8 Kit (MEG, n = 3,019). Quality control and data cleaning

before imputation were done using PLINK1.9 [21]. We conducted genotyping quality control

within each array by restricting to chromosome 1–22 and removing variants with a missing

genotype rate�0.05. We then removed participants with a missing genotype rate greater than

0.05 and/or duplicated IDs. We removed variants with extreme departure from Hardy-Wein-

berg equilibrium (p-value<10−30) for variants with minor allele frequency (MAF)>0.05.

Empirically assigned ancestry. We removed regions of long-range linkage disequilibrium

(LD) [22], and pruned for LD (window size = 10000, shift = 10, Rsq threshold = 0.1) to obtain

a set of independent SNPs. We then used 1KGP to empirically assign each genotyped individ-

ual to an ancestry group [19, 23]. We identified SNPs that were included in both our pruned

dataset (see above) and in 1KGP, ignoring insertions and deletions. We used the Genotype-

Harmonizer to correct any allele mismatches [24]. We used smartPCA to infer principal com-

ponents (PCs) based on the 1KGP population and projected these to CNICS participants [21,

25](S1 Fig). Within each of the 26 assigned 1KGP populations, we used the first 10 PCs to cal-

culate the mean and covariance matrix for each 1KGP population. We then calculated the

Mahalanobis distance for each subject in CNICS with all 26 1KGP populations and removed

any population outliers (>4 standard deviations from the mean, 12 participants from MEGA,

14 participants from MEGAEx and no participants from MEG). We then recalculated the
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mean and covariance matrix for the first 10 PCs in CNICS [23], recalculated the Mahalanobis

distance and assigned each individual to the closest 1KGP population based on Mahalanobis

distance. Our final datasets included CNICS individuals assigned to African (AFR, n = 5,051),

Admixed American (AMR, n = 1,741), and European (EUR, n = 3,250) ancestral

superpopulations.

Ancestry-SPECIFIC quality control. Within each ancestry population and genotype

array, we used the “check-sex” function in PLINK v1.9 to compute X chromosome inbreeding

coefficients (parameter F) in the subset of individuals empirically assigned as AFR, AMR, or

EUR. We removed pseudo-autosomal regions and excluded variants with genotype missing

rate>5%, MAF<0.05. We then obtained a set of independent SNPs (r2<0.1) (—indep-pair-

wise 100kb 1 0.1). We chose an F minimum of 0.5 for female cutoff, and the default 0.8 for

Fig 1. Flow diagram for sample inclusion based on genotype quality control, empirically assigned ancestry, and genotype imputation for samples with

genotype data in CNICS. AFR = African; AMR = Ad Mixed American; EAS = East Asian; EUR = European; SAS = South Asian MAF = Minor allele

frequency.

https://doi.org/10.1371/journal.pone.0292068.g001
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males after manual inspection of the distribution of F. Individuals with mismatches for

reported birth sex and genetically inferred sex were removed (n = 212).

Merged genotype data. We merged remaining participants across genotyping arrays

within ancestry based on Genome Reference Consortium Human Build 37, restricting to com-

mon SNPs between platforms using Genotype-Harmonizer to check for strand flips [24]. We

used PLINK to generate PCs using the same pruning steps as described above and tested all

SNPs for associations with platform (MEGAEx = 1 vs MEGA = 0) as the outcome, adjusting

for 10 PCs. Significantly associated SNPs (p-value<5E-08) were removed before imputation.

We repeated this step again to merge MEG to MEGA and MEGAEX.

TOPMed imputation and relatedness. Within assigned ancestry, we repeated our quality

control (QC) pipelines, removing variants with missing genotype rates >5%, then samples

with missing genotype rates >5%, restricting to chromosomes 1–22 and MAF>0.01, and

removing SNPs with departure from Hardy-Weinberg equilibrium at p<10E-8. Data were pre-

pared for imputation using the TOPMed imputation server at Michigan according to recom-

mended guidelines [26] with parameter settings for TopMed and “Mixed” population

reference genome GRCh38, without filtering.

We used the SNPRelate package in R to convert the TOPMed imputed VFC files to GDS

formats for analyses. We included genotyped SNPs with MAF>0.05 and missingness<0.10 for

calculating the genetic relationship matrix from GCTA [27]. We removed regions of long-

range LD and performed LD pruning in PLINK to obtain a set of independent (r2<0.1) SNPs.

We then calculated relatedness and PCs within ancestry groups.

Statistical analysis

We performed genome-wide analyses within each of the three superpopulations (AFR, AMR,

EUR) for the nine substance use phenotypes collected from PROs: (1) Alcohol use in the last

30 days; (2) Number of drinks on a typical day of drinking; (3) Frequency of binge drinking

(�5 drinks for men and�4 for women) in the last 30 days; (4) Smoking initiation; (5) Smok-

ing cessation; (6) cigarettes per day among PWH who smoke; (7) Cannabis use initiation; (8)

Cannabis use cessation; and (9) Cannabis use frequency in the last three months. We included

variants with imputation quality greater than 0.8, MAF greater than 1%, and Hardy-Weinberg

equilibrium p-value>10−10. We conducted association analyses using the GENESIS package in

R [28, 29]. We created a null model using Gaussian or logistic regression, depending on out-

come, by regressing the outcome on the following covariates: age at visit, first five PCs, array

(indicator variable) and the genetic relatedness matrix modeled as a random effect following

the GENESIS pipeline. We then performed single variant association tests assuming an addi-

tive inheritance model on the fitted null model.

We performed Meta-Regression of Multi-Ethnic Genetic Association across the three

ancestry groups using MR-MEGA [30]. MR-MEGA uses genome-wide metrics of genetic het-

erogeneity between populations to model population variation via multi-dimensional scaling

[21]. Final results were filtered to MAF>0.01 in the overall study population. We assessed

genomic inflation factor (λ) and visually inspected the QQ-plots to identify statistical inflation

and present the plots in S3A–S3I Fig. We created regional association plots using LocusZoom

[31] for signals that reached genome-wide significance in the multi-ancestry GWAS. Due to

low statistical power, we do not present ancestry specific GWAS results.

We compared results for alcohol use and smoking behavior to previously reported findings

from Liu et al. Nature 2019 [8] which included up to 1.2 million individuals. For cannabis phe-

notypes we compared results to findings published by Pasman et al. Nat Neurosci. 2018 [10]

which analyzed lifetime cannabis use among 184,765 individuals. We highlight previously
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reported SNPs with p<0.01 in CNICS as credible evidence of consistent findings which

included as few as 8 known SNPs for cannabis initiation to as many as 350 for smoking

initiation.

Results

After QC exclusions, our final genetic data included 10,049 PWH, with 5,051, 1,748, and 3,250

empirically assigned to AFR, AMR, and EUR populations, respectively. Among these, 7,542 indi-

viduals had PRO data available for phenotyping and were included in our GWAS (Table 1). We

had data on alcohol consumption for 7,252 individuals, smoking information for 7,542 individu-

als and information about cannabis use for 7,280 individuals. The proportion who reported ever

smoking varied by assigned ancestry, with 70% of those of EUR ancestry reporting either current

or former smoking compared to 62% of AFR ancestry and 57% of AMR ancestry. Among those

with cannabis use information, 74% of those of EUR ancestry reported cannabis use in the last

year compared to 61% of AMR and 56% of those assigned to AFR ancestry.

Alcohol

We compared our genetic association results to those previously reported by Liu et al. [8]. Of

99 variants reported by Liu et al. to be associated with drinks per week, a previously reported

non-synonymous variant in the Alcohol Dehydrogenase 1B (ADH1B) gene was nominally

associated with drinks per week in CNICS and directionally consistent (rs1229984, p = 0.001,

MAF = 0.03, ßLiu = 0.15, ßCNICS = 0.43) (Table 2; S1 Table in S1 Data). However, no variants

reached p<0.01 for frequency of drinking in the last 30 days or for frequency of binge drinking

in our multi-ancestry analysis (S2, S3 Tables in S1 Data).

Smoking

Among 351 SNPs reported by Liu et al. to be associated with smoking initiation at a genome-

wide significant level, nine showed associations at p<0.01 with smoking initiation in our

multi-ancestry analysis (Table 2; S4 Table in S1 Data), with the strongest association for

rs11783093 (8p21.1, p = 2.22E-4, MAF = 0.08, ßLiu = -0.05, ßCNICS = -0.23). For smoking cessa-

tion, of the 21 SNPs reported by Liu et al. overlapping with our data, two SNPs were associated

Table 1. Sample sizes for substance use related phenotypes among samples in CNICS within genetically assigned ancestry.

AFR (N = 5,051) AMR (N = 1,748) EUR (N = 3,250) Total (N = 10,049)

Alcohol* (n = 3,477) (n = 1,307) (n = 2,460) (n = 7,244)

1) Alcoholic drinks per week 2,144 889 1,679 4,712

2) Number of drinks 2,139 888 1,674 4,701

3) Binge drinking 2,140 887 1,678 4,705

Smoking

4) Never vs. ever 3,748 1,334 2,460 7,542

5) Current vs. former 2,304 762 1,719 4,785

6) Smoking frequency 2,282 753 1,710 4,745

Cannabis

7) Never vs. ever 3,553 1,319 2,408 7,280

8) Current vs. former 1,995 801 1,780 4,576

9) Cannabis frequency 938 364 768 2,070

*Note that alcohol data was available for max n and analyses were then subset to those who reported any drinking. Measures of current versus former and frequency of

smoking and cannabis use were subset to ever users.

https://doi.org/10.1371/journal.pone.0292068.t001
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at p<0.01, including rs56113850 in the CYP2A6 gene (Table 2; S5 Table in S1 Data). Among

the 51 SNPs associated with cigarettes per day among people who smoke reported by Liu et al,

none reached p<0.01 in our multi-ancestry results (S6 Table in S1 Data). Direction of effects

were also consistent with published beta coefficients for all SNPs which reached p<0.01 in our

analyses.

Cannabis

We extracted the results for seven SNPs previously reported by Pasman et al. to be associated

with lifetime cannabis use [10]. None of the seven SNPs was associated with cannabis use phe-

notypes at p<0.01 in our multi-ancestry analysis (S7-S9 Tables in S1 Data). In ancestry-spe-

cific analyses, one SNP located in CADM2 showed nominal association with cannabis

initiation (rs2875907, p = 0.005, MAF = 0.36, ßPasman = 0.07, ßCNICS = 0.20) in the EUR only

GWAS for which the direction of effect was consistent with the beta estimate found by Pasman

et al. (S7 Table in S1 Data). We did not observe any replication of previous findings for canna-

bis cessation (S8 Table in S1 Data). One SNP at 17p13.3 near the SMG6 gene was nominally

associated with frequency of cannabis use standardized to the last 30 days (rs17761723,

p = 3.97E-4, MAF = 0.07, ßPasman = 0.05, ßCNICS = 0.69) in the AFR only GWAS with the same

direction of effect for the alternative allele (S9 Table in S1 Data).

In the multi-ancestry GWAS of cannabis cessation, we observed two novel genome-wide

significant associations at 19p13.2 (rs311780, p = 1.29E-8, MAF = 0.19) and 20p11.21

(rs6113974, p = 2.07E-8, MAF = 0.04) (S4A and S4B Fig; Table 3). The lead SNP at locus

19p13.2 showed no evidence of association in the AMR population (ß = 0.03, MAF = 0.06,

p = 0.91), but modest effects in EUR (ß = -0.45, MAF = 0.05, p = 0.0045) and in AFR where

this variant was more common (ß = -0.36, MAF = 0.36, p = 2.58E-7). Conversely, for locus

20p11.21, we observed associations in EUR (ß = 0.85, MAF = 0.04, p = 8.08E-7) and in AFR (ß

= 0.48, MAF = 0.05, p = 0.003), but no evidence in the AMR population (ß = 0.35,

MAF = 0.03, p = 0.20).

Table 2. Strongest associations for substance use phenotypes among PWH in the U.S. among previously published SNPs.

Chromosome:

Position:Ref:Alt

rsID Published p-value CNICS p-value Annotation

Alcohol

Number of drinks chr4:99318162:T:C rs1229984 <2.2E-308 0.001 Nonsynonymous:ADH1B
Smoking

Never vs. ever chr1:18110163:G:T rs3820277 1.57E-13 0.005 IGSF21/NM_032880:+:Intron

chr1:95948779:T:G rs1935571 6.99E-10 0.005 Intergenic

chr2:103510525:A:

G

rs1901477 2.07E-31 0.004 Intergenic

chr5:30841947:T:G rs12517438 1.89E-09 0.007 Intergenic

chr6:41934025:C:T rs3218116 1.05E-11 0.006 Intergenic

chr8:27567832:C:T rs11783093 2.07E-41 0.0002 Intergenic

chr8:27568560:T:A rs1565735 1.33E-09 0.008 Intergenic

chr10:104700702:T:

C

rs9787523 1.42E-09 0.003 SORCS3/NM_014978:+:Intron

chr16:69542991:A:

G

rs9302604 3.29E-13 0.006 Intergenic

Current vs. former chr8:27568560:T:A rs1565735 1.54E-12 0.008 Intergenic

chr19:40847202:T:C rs56113850 1.61E-48 0.007 CYP2A6/NM_000762:-:Intron

Direction of effects were all consistent with previously published SNPs

https://doi.org/10.1371/journal.pone.0292068.t002
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Discussion

In this study, we set out to assess if known genetic associations for substance use (alcohol,

smoking and cannabis) are also observed in a diverse population of PWH living in the US.

One of the most well-known genetic associations with alcohol consumption is the non-synon-

ymous variant rs1229984 located in the ADH1B gene [8]. We observed an association of this

variant with the number of drinks on a typical day of drinking (p = 0.001), as well as with the

frequency of drinking in the last 30 days in individuals of admixed American ancestry

(p = 0.001). When comparing our results to the largest GWAS of smoking (conducted in 1.2

million individuals, Liu et al.) we found evidence of the important role of the nicotine metabo-

lism gene CYP2A6 in relation to both smoking cessation and cigarettes per day [8]. However,

we only observed support for the published SNP in the EUR population and not in the AFR

population despite the larger sample size, suggesting that perhaps another SNP may better tag

the causal variant(s) in that population. Proposed mechanisms through which genetic varia-

tion may alter individual predisposition for substance use have largely involved neurotrans-

mission, dopamine systems reward pathways, and stress response [32]. It is possible that

numerous exposures in PWH alter these pathways, including immunosuppression, long-term

treatments, and societal factors related to stigma and marginalization. We recognize that we

are likely underpowered due to sample to detect many previously associated SNPs.

We conducted GWAS of nine substance use phenotypes for up to 7,542 PWH living in the

United States. We report novel findings at two loci (19p13.2 and 20p11.21) for cessation of

cannabis use, a sparsely studied phenotype in GWAS. SNPs intronic to ELAVL3 at 19p13.2 is a

neural-specific RNA-binding protein with a suggested role in neurogenesis. Differential

expression of the ELAVL3 gene has been shown in brain tissues [33]. While it has been sug-

gested to play a role in spatial learning [34], no links have been made to substance use or

behavioral traits previously. Genetics may influence cannabis cessation more than lifetime use

of cannabis, which is likely a product of societal norms rather than biologic influences. There

are no strong plausible candidate genes close to the 20p11.21 signal.

In the 2019 National Survey on Drug Use and Health (NSDUH), 55% of people age 18 and

older in the United States reported drinking alcohol in the past month [35]. Consistent with

previous work on the prevalence of substance use in PWH [36], upwards of 65% of our study

population reported having consumed alcohol in the last month. That same report found that

34% of adults 18 and older report binge alcohol use in the last month. Lifetime use of tobacco

products was an estimated 63% in adult 18+ in the NSDUH [35]. Smoking prevalence is

known to be higher in PWH than the general population [37], and in our population, we

observed a life-time prevalence of 63%. The NSDUH found 49% of people aged 18 or older

Table 3. Independent genome-wide significant loci for cannabis use cessation in meta-analysis of PWH across ancestries.

MR-MEGA

(N = 4,576)

AFR (N = 1,995) AMR (N = 801) EUR (N = 1780)

Chromosome:Position rsID Beta (SE) P-value MAF Beta (SE) P-value MAF Beta (SE) P-value MAF Beta (SE) P-value

chr19:11460095:G:A rs311780 -0.35 (0.07) 1.29E-8 0.36 -0.36 (0.07) 2.58E-7 0.06 -0.027 (0.24) 0.910 0.05 -0.45 (0.16) 4.51E-3

chr20:23169112:G:A rs6113974 0.60 (0.14) 2.07E-8 0.05 0.48 (0.16) 2.64E-3 0.03 0.35 (0.27) 0.203 0.04 0.85 (0.17) 8.08E-7

AFR = African

AMR = Admixed American

EUR = European

SE = standard error

MAF = minor allele frequency

https://doi.org/10.1371/journal.pone.0292068.t003
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reported ever using marijuana in their lifetime [35], as compared to 63% in CNICS. In the con-

text of genetic analyses, these overall higher prevalence among PWH allow for additional

investigations into factors associated with cessation as the numbers of ever users of alcohol,

tobacco, and cannabis tend to be higher than in the general population, albeit to varied degrees

according to ancestry.

An important strength of this study is our high-quality phenotype measurements. CNICS has

served as clinical care sites for the Patient Reported Outcomes Measurement Information System

(PROMIS), enabling a focus on valid measurement approaches for PROs to minimize societal

bias and maximize ascertainment of substance use phenotypes. We were able to capture detailed

information about alcohol use through the use of questions from a validated tool, the AUDIT-C,

including assessment of both frequency and amount of alcohol consumption; two factors which

are suggested to have independent influences on hazardous drinking [38]. This work represents a

geographically and racially diverse population. Our genetic approach to empirically assign sam-

ples to reference ancestry populations and perform within ancestry GWAS mitigates the potential

confounding due to population stratification and structure. We leverage this diversity to assess the

generalizability of previous research on the genetic architecture of substance use, which predomi-

nantly relies on populations of nearly exclusive European ancestry.

We recognize that our relatively small sample sizes compared to previous work make our

analyses generally underpowered to detect genome-wide significant associations for traits with

low heritability. Our findings for cannabis cessation, if replicated, may suggest that cannabis

cessation has a genetic component. Unfortunately, our small sample sizes limit our ability to

estimate genome-wide SNP heritability of these traits. Neuronal acetylcholine nicotine recep-

tors have long been implicated for their role in nicotine dependence [39]. In Liu et al. the

strongest association was for CHRNA3, but we did not observe any significant effect of genetic

variants in this gene. Understanding whether and to what extent genetic factors are associated

with substance use patterns would be a valuable insight into helping reduce and mitigate the

effects of substance use disorders in PWH.

In summary, we validate previous findings of the genetic effects of the ADH1B gene on

alcohol consumption in a population with relatively high alcohol intake, and specifically on

number of drinks on a typical day of drinking. We report novel findings from our multi-ances-

try GWAS of cannabis cessation in PWH, but we stress the need for independent replication

of these results. We present a methodological framework for future genetic analyses to be con-

ducted in a diverse and underrepresented population with extensive and well characterized

behavioral and clinical data.
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