2,743 research outputs found

    Recommendations of protective measures for orthopedic surgeons during COVID-19 pandemic

    Get PDF
    PURPOSE: It was the primary purpose of the present systematic review to identify the optimal protection measures during COVID-19 pandemic and provide guidance of protective measures for orthopedic surgeons. The secondary purpose was to report the protection experience of an orthopedic trauma center in Wuhan, China during the pandemic. METHODS: A systematic search of the PubMed, Cochrane, Web of Science, Google Scholar was performed for studies about COVID-19, fracture, trauma, orthopedic, healthcare workers, protection, telemedicine. The appropriate protective measures for orthopedic surgeons and patients were reviewed (on-site first aid, emergency room, operating room, isolation wards, general ward, etc.) during the entire diagnosis and treatment process of traumatic patients. RESULTS: Eighteen studies were included, and most studies (13/18) emphasized that orthopedic surgeons should pay attention to prevent cross-infection. Only four studies have reported in detail how orthopedic surgeons should be protected during surgery in the operating room. No detailed studies on multidisciplinary cooperation, strict protection, protection training, indications of emergency surgery, first aid on-site and protection in orthopedic wards were found. CONCLUSION: Strict protection at every step in the patient pathway is important to reduce the risk of cross-infection. Lessons learnt from our experience provide some recommendations of protective measures during the entire diagnosis and treatment process of traumatic patients and help others to manage orthopedic patients with COVID-19, to reduce the risk of cross-infection between patients and to protect healthcare workers during work. LEVEL OF EVIDENCE: IV

    Pediatric Cushing disease: disparities in disease severity and outcomes in the Hispanic and African-American populations.

    Get PDF
    BackgroundLittle is known about the contribution of racial and socioeconomic disparities to severity and outcomes in children with Cushing disease (CD).MethodsA total of 129 children with CD, 45 Hispanic/Latino or African-American (HI/AA) and 84 non-Hispanic White (non-HW), were included in this study. A 10-point index for rating severity (CD severity) incorporated the degree of hypercortisolemia, glucose tolerance, hypertension, anthropomorphic measurements, disease duration, and tumor characteristics. Race, ethnicity, age, gender, local obesity prevalence, estimated median income, and access to care were assessed in regression analyses of CD severity.ResultsThe mean CD severity in the HI/AA group was worse than that in the non-HW group (4.9±2.0 vs. 4.1±1.9, P=0.023); driving factors included higher cortisol levels and larger tumor size. Multiple regression models confirmed that race (P=0.027) and older age (P=0.014) were the most important predictors of worse CD severity. When followed up a median of 2.3 years after surgery, the relative risk for persistent CD combined with recurrence was 2.8 times higher in the HI/AA group compared with that in the non-HW group (95% confidence interval: 1.2-6.5).ConclusionOur data show that the driving forces for the discrepancy in severity of CD are older age and race/ethnicity. Importantly, the risk for persistent and recurrent CD was higher in minority children

    Stage-Specific Inhibition of MHC Class I Presentation by the Epstein-Barr Virus BNLF2a Protein during Virus Lytic Cycle

    Get PDF
    gamma-herpesvirus Epstein-Barr virus (EBV) persists for life in infected individuals despite the presence of a strong immune response. During the lytic cycle of EBV many viral proteins are expressed, potentially allowing virally infected cells to be recognized and eliminated by CD8+ T cells. We have recently identified an immune evasion protein encoded by EBV, BNLF2a, which is expressed in early phase lytic replication and inhibits peptide- and ATP-binding functions of the transporter associated with antigen processing. Ectopic expression of BNLF2a causes decreased surface MHC class I expression and inhibits the presentation of indicator antigens to CD8+ T cells. Here we sought to examine the influence of BNLF2a when expressed naturally during EBV lytic replication. We generated a BNLF2a-deleted recombinant EBV (ΔBNLF2a) and compared the ability of ΔBNLF2a and wild-type EBV-transformed B cell lines to be recognized by CD8+ T cell clones specific for EBV-encoded immediate early, early and late lytic antigens. Epitopes derived from immediate early and early expressed proteins were better recognized when presented by ΔBNLF2a transformed cells compared to wild-type virus transformants. However, recognition of late antigens by CD8+ T cells remained equally poor when presented by both wild-type and ΔBNLF2a cell targets. Analysis of BNLF2a and target protein expression kinetics showed that although BNLF2a is expressed during early phase replication, it is expressed at a time when there is an upregulation of immediate early proteins and initiation of early protein synthesis. Interestingly, BNLF2a protein expression was found to be lost by late lytic cycle yet ΔBNLF2a-transformed cells in late stage replication downregulated surface MHC class I to a similar extent as wild-type EBV-transformed cells. These data show that BNLF2a-mediated expression is stage-specific, affecting presentation of immediate early and early proteins, and that other evasion mechanisms operate later in the lytic cycle

    Defining strawberry shape uniformity using 3D imaging and genetic mapping

    Get PDF
    Strawberry shape uniformity is a complex trait, influenced by multiple genetic and environmental components. To complicate matters further, the phenotypic assessment of strawberry uniformity is confounded by the difficulty of quantifying geometric parameters ‘by eye’ and variation between assessors. An in-depth genetic analysis of strawberry uniformity has not been undertaken to date, due to the lack of accurate and objective data. Nonetheless, uniformity remains one of the most important fruit quality selection criteria for the development of a new variety. In this study, a 3D-imaging approach was developed to characterise berry shape uniformity. We show that circularity of the maximum circumference had the closest predictive relationship with the manual uniformity score. Combining five or six automated metrics provided the best predictive model, indicating that human assessment of uniformity is highly complex. Furthermore, visual assessment of strawberry fruit quality in a multi-parental QTL mapping population has allowed the identification of genetic components controlling uniformity. A “regular shape” QTL was identified and found to be associated with three uniformity metrics. The QTL was present across a wide array of germplasm, indicating a potential candidate for marker-assisted breeding, while the potential to implement genomic selection is explored. A greater understanding of berry uniformity has been achieved through the study of the relative impact of automated metrics on human perceived uniformity. Furthermore, the comprehensive definition of strawberry shape uniformity using 3D imaging tools has allowed precision phenotyping, which has improved the accuracy of trait quantification and unlocked the ability to accurately select for uniform berries

    A fresh look at the evolution and diversification of photochemical reaction centers

    Get PDF
    In this review, I reexamine the origin and diversification of photochemical reaction centers based on the known phylogenetic relations of the core subunits, and with the aid of sequence and structural alignments. I show, for example, that the protein folds at the C-terminus of the D1 and D2 subunits of Photosystem II, which are essential for the coordination of the water-oxidizing complex, were already in place in the most ancestral Type II reaction center subunit. I then evaluate the evolution of reaction centers in the context of the rise and expansion of the different groups of bacteria based on recent large-scale phylogenetic analyses. I find that the Heliobacteriaceae family of Firmicutes appears to be the earliest branching of the known groups of phototrophic bacteria; however, the origin of photochemical reaction centers and chlorophyll synthesis cannot be placed in this group. Moreover, it becomes evident that the Acidobacteria and the Proteobacteria shared a more recent common phototrophic ancestor, and this is also likely for the Chloroflexi and the Cyanobacteria. Finally, I argue that the discrepancies among the phylogenies of the reaction center proteins, chlorophyll synthesis enzymes, and the species tree of bacteria are best explained if both types of photochemical reaction centers evolved before the diversification of the known phyla of phototrophic bacteria. The primordial phototrophic ancestor must have had both Type I and Type II reaction centers

    Deficiency and Also Transgenic Overexpression of Timp-3 Both Lead to Compromised Bone Mass and Architecture In Vivo

    Get PDF
    Tissue inhibitor of metalloproteinases-3 (TIMP-3) regulates extracellular matrix via its inhibition of matrix metalloproteinases and membrane-bound sheddases. Timp-3 is expressed at multiple sites of extensive tissue remodelling. This extends to bone where its role, however, remains largely unresolved. In this study, we have used Micro-CT to assess bone mass and architecture, histological and histochemical evaluation to characterise the skeletal phenotype of Timp-3 KO mice and have complemented this by also examining similar indices in mice harbouring a Timp-3 transgene driven via a Col-2a-driven promoter to specifically target overexpression to chondrocytes. Our data show that Timp-3 deficiency compromises tibial bone mass and structure in both cortical and trabecular compartments, with corresponding increases in osteoclasts. Transgenic overexpression also generates defects in tibial structure predominantly in the cortical bone along the entire shaft without significant increases in osteoclasts. These alterations in cortical mass significantly compromise predicted tibial load-bearing resistance to torsion in both genotypes. Neither Timp-3 KO nor transgenic mouse growth plates are significantly affected. The impact of Timp-3 deficiency and of transgenic overexpression extends to produce modification in craniofacial bones of both endochondral and intramembranous origins. These data indicate that the levels of Timp-3 are crucial in the attainment of functionally-appropriate bone mass and architecture and that this arises from chondrogenic and osteogenic lineages

    Bio-nanotechnology application in wastewater treatment

    Get PDF
    The nanoparticles have received high interest in the field of medicine and water purification, however, the nanomaterials produced by chemical and physical methods are considered hazardous, expensive, and leave behind harmful substances to the environment. This chapter aimed to focus on green-synthesized nanoparticles and their medical applications. Moreover, the chapter highlighted the applicability of the metallic nanoparticles (MNPs) in the inactivation of microbial cells due to their high surface and small particle size. Modifying nanomaterials produced by green-methods is safe, inexpensive, and easy. Therefore, the control and modification of nanoparticles and their properties were also discussed

    Rheological properties of magnetic biogels

    Get PDF
    We report an experimental and theoretical study of the rheological properties of magnetic biogels consisting of fibrin polymer networks with embedded magnetite nanoparticles, swollen by aqueous solutions. We studied two types of magnetic biogels, differenced by the presence or absence of an applied magnetic field during the initial steps of cross-linking. The experiments demonstrated very strong dependence of the elastic modulus of the magnetic biogels on the concentration of the magnetic particles. We finally developed some theoretical models that explain the observed strong concentration effects.This study was supported by projects FIS2013-41821-R (Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica, MINECO, Spain, co-funded by ERDF, European Union) and FIS2017-85954-R (Ministerio de Economía, Industria y Competitividad, MINECO, andAgencia Estatal de Investigación, AEI, Spain, co-funded by Fondo Europeo de Desarrollo Regional, FEDER, European Union). A.Z. is grateful to the program of the Ministry of Education and Science of the Russian Federation, projects 02.A03.21.0006, 3.1438.2017/4.6, and 3.5214.2017/6.7, as well as to the Russian Fund of Basic Researches, project 18-08-00178
    corecore