175 research outputs found

    Gender differences in health care use among the elderly population in areas of Norway and Finland. A cross-sectional analysis based on the HUNT study and the FINRISK Senior Survey

    Get PDF
    BACKGROUND: The aim of the study was to examine gender differences in the self-reported use of health care services by the elderly in rural and metropolitan areas of two Nordic countries with slightly different health care systems: Finland and Norway. METHODS: Population based, cross-sectional surveys conducted in Nord-Tröndelag Norway (1995–97) and in rural and metropolitan areas of Finland (1997) were employed. In the Norwegian data, a total of 7,919 individuals, aged 65–74 years old were included, and the Finnish data included 1,500 individuals. The outcome variables comprised whether participants had visited a general practitioner or a specialist, or had received hospital care or physiotherapy during the past 12 months. Gender differences in the use of health care services were analysed by multiple logistic regression, controlling for health status and socio-demographic characteristics. RESULTS: In Norway, elderly women visited a specialist or were hospitalised less often than men. In Finland, elderly women used all health care services except hospital care more often than men. In Norway, less frequent use of specialist care by women was not associated with self-reported health or chronic diseases. CONCLUSION: The findings revealed differences in self-reported use of secondary care among different genders in areas of Norway and Finland

    Large tunable valley splitting in edge-free graphene quantum dots on boron nitride

    Full text link
    Coherent manipulation of binary degrees of freedom is at the heart of modern quantum technologies. Graphene offers two binary degrees: the electron spin and the valley. Efficient spin control has been demonstrated in many solid state systems, while exploitation of the valley has only recently been started, yet without control on the single electron level. Here, we show that van-der Waals stacking of graphene onto hexagonal boron nitride offers a natural platform for valley control. We use a graphene quantum dot induced by the tip of a scanning tunneling microscope and demonstrate valley splitting that is tunable from -5 to +10 meV (including valley inversion) by sub-10-nm displacements of the quantum dot position. This boosts the range of controlled valley splitting by about one order of magnitude. The tunable inversion of spin and valley states should enable coherent superposition of these degrees of freedom as a first step towards graphene-based qubits

    Expansion of Canopy-Forming Willows Over the Twentieth Century on Herschel Island, Yukon Territory, Canada

    Get PDF
    Canopy-forming shrubs are reported to be increasing at sites around the circumpolar Arctic. Our results indicate expansion in canopy cover and height of willows on Herschel Island located at 70° north on the western Arctic coast of the Yukon Territory. We examined historic photographs, repeated vegetation surveys, and conducted monitoring of long-term plots and found evidence of increases of each of the dominant canopy-forming willow species (Salix richardsonii, Salix glauca and Salix pulchra), during the twentieth century. A simple model of patch initiation indicates that the majority of willow patches for each of these species became established between 1910 and 1960, with stem ages and maximum growth rates indicating that some patches could have established as late as the 1980s. Collectively, these results suggest that willow species are increasing in canopy cover and height on Herschel Island. We did not find evidence that expansion of willow patches is currently limited by herbivory, disease, or growing conditions. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s13280-011-0168-y) contains supplementary material, which is available to authorized users

    Experimental Assessment of the Water Quality Influence on the Phosphorus Uptake of an Invasive Aquatic Plant: Biological Responses throughout Its Phenological Stage

    Get PDF
    International audienceUnderstanding how an invasive plant can colonize a large range of environments is still a great challenge in freshwater ecology. For the first time, we assessed the relative importance of four factors on the phosphorus uptake and growth of an invasive macrophyte Elodea nuttallii (Planch.) St. John. This study provided data on its phenotypic plasticity, which is frequently suggested as an important mechanism but remains poorly investigated. The phosphorus uptake of two Elodea nuttallii subpopulations was experimentally studied under contrasting environmental conditions. Plants were sampled in the Rhine floodplain and in the Northern Vosges mountains, and then maintained in aquaria in hard (Rhine) or soft (Vosges) water. Under these conditions, we tested the influence of two trophic states (eutrophic state, 100 mu g.l(-1) P-PO43- and hypertrophic state, 300 mu g.l(-1) P-PO43-) on the P metabolism of plant subpopulations collected at three seasons (winter, spring and summer). Elodea nuttallii was able to absorb high levels of phosphorus through its shoots and enhance its phosphorus uptake, continually, after an increase of the resource availability (hypertrophic > eutrophic). The lowest efficiency in nutrient use was observed in winter, whereas the highest was recorded in spring, what revealed thus a storage strategy which can be beneficial to new shoots. This experiment provided evidence that generally, the water trophic state is the main factor governing P uptake, and the mineral status (softwater > hardwater) of the stream water is the second main factor. The phenological stage appeared to be a confounding factor to P level in water. Nonetheless, phenology played a role in P turnover in the plant. Finally, phenotypic plasticity allows both subpopulations to adapt to a changing environment

    Contrasting effects of long term versus short-term nitrogen addition on photosynthesis and respiration in the Arctic

    Get PDF
    We examined the effects of short (<1–4 years) and long-term (22 years) nitrogen (N) and/or phosphorus (P) addition on the foliar CO2 exchange parameters of the Arctic species Betula nana and Eriophorum vaginatum in northern Alaska. Measured variables included: the carboxylation efficiency of Rubisco (Vcmax), electron transport capacity (Jmax), dark respiration (Rd), chlorophyll a and b content (Chl), and total foliar N (N). For both B. nana and E. vaginatum, foliar N increased by 20–50 % as a consequence of 1–22 years of fertilisation, respectively, and for B. nana foliar N increase was consistent throughout the whole canopy. However, despite this large increase in foliar N, no significant changes in Vcmax and Jmax were observed. In contrast, Rd was significantly higher (>25 %) in both species after 22 years of N addition, but not in the shorter-term treatments. Surprisingly, Chl only increased in both species the first year of fertilisation (i.e. the first season of nutrients applied), but not in the longer-term treatments. These results imply that: (1) under current (low) N availability, these Arctic species either already optimize their photosynthetic capacity per leaf area, or are limited by other nutrients; (2) observed increases in Arctic NEE and GPP with increased nutrient availability are caused by structural changes like increased leaf area index, rather than increased foliar photosynthetic capacity and (3) short-term effects (1–4 years) of nutrient addition cannot always be extrapolated to a larger time scale, which emphasizes the importance of long-term ecological experiments

    Twenty-Two Years of Warming, Fertilisation and Shading of Subarctic Heath Shrubs Promote Secondary Growth and Plasticity but Not Primary Growth

    Get PDF
    Most manipulation experiments simulating global change in tundra were short-term or did not measure plant growth directly. Here, we assessed the growth of three shrubs (Cassiope tetragona, Empetrum hermaphroditum and Betula nana) at a subarctic heath in Abisko (Northern Sweden) after 22 years of warming (passive greenhouses), fertilisation (nutrients addition) and shading (hessian fabric), and compare this to observations from the first decade of treatment. We assessed the growth rate of current-year leaves and apical stem (primary growth) and cambial growth (secondary growth), and integrated growth rates with morphological measurements and species coverage. Primary- and total growth of Cassiope and Empetrum were unaffected by manipulations, whereas growth was substantially reduced under fertilisation and shading (but not warming) for Betula. Overall, shrub height and length tended to increase under fertilisation and warming, whereas branching increased mostly in shaded Cassiope. Morphological changes were coupled to increased secondary growth under fertilisation. The species coverage showed a remarkable increase in graminoids in fertilised plots. Shrub response to fertilisation was positive in the short-term but changed over time, likely because of an increased competition with graminoids. More erected postures and large, canopies (requiring enhanced secondary growth for stem reinforcement) likely compensated for the increased light competition in Empetrum and Cassiope but did not avoid growth reduction in the shade intolerant Betula. The impact of warming and shading on shrub growth was more conservative. The lack of growth enhancement under warming suggests the absence of long-term acclimation for processes limiting biomass production. The lack of negative effects of shading on Cassiope was linked to morphological changes increasing the photosynthetic surface. Overall, tundra shrubs showed developmental plasticity over the longer term. However, such plasticity was associated clearly with growth rate trends only in fertilised plots

    Tight coupling of leaf area index to canopy nitrogen and phosphorus across heterogeneous tallgrass prairie communities

    Get PDF
    Nitrogen (N) and phosphorus (P) are limiting nutrients for many plant communities worldwide. Foliar N and P along with leaf area are among the most important controls on photosynthesis and hence productivity. However, foliar N and P are typically assessed as species level traits, whereas productivity is often measured at the community scale. Here, we compared the community-level traits of leaf area index (LAI) to total foliar nitrogen (TFN) and total foliar phosphorus (TFP) across nearly three orders of magnitude LAI in grazed and ungrazed tallgrass prairie in north-eastern Kansas, USA. LAI was strongly correlated with both TFN and TFP across communities, and also within plant functional types (grass, forb, woody, and sedge) and grazing treatments (bison or cattle, and ungrazed). Across almost the entire range of LAI values and contrasting communities, TFN:TFP ratios indicated co-limitation by N and P in almost all communities; this may further indicate a community scale trend of an optimal N and P allocation per unit leaf area for growth. Previously, results from the arctic showed similar tight relationships between LAI:TFN, suggesting N is supplied to canopies to maximize photosynthesis per unit leaf area. This tight coupling between LAI, N, and P in tallgrass prairie suggests a process of optimal allocation of N and P, wherein LAI remains similarly constrained by N and P despite differences in species composition, grazing, and canopy density
    • …
    corecore