1,919 research outputs found

    Efficient photosynthesis of carbon monoxide from CO2 using perovskite photovoltaics

    Get PDF
    Artificial photosynthesis, mimicking nature in its efforts to store solar energy, has received considerable attention from the research community. Most of these attempts target the production of H2 as a fuel and our group recently demonstrated solar-to-hydrogen conversion at 12.3% efficiency. Here, in an effort to take this approach closer to real photosynthesis, which is based on the conversion of CO2, we demonstrate the efficient reduction of CO2 to carbon monoxide driven solely by simulated sunlight using water as the electron source. Employing series-connected perovskite photovoltaics and high-performance catalyst electrodes, we reach a solar-to-CO efficiency exceeding 6.5%, which represents a new benchmark in sunlight-driven CO2 conversion. Considering hydrogen as a secondary product, an efficiency exceeding 7% is observed. Furthermore, this study represents one of the first demonstrations of extended, stable operation of perovskite photovoltaics, whose large open-circuit voltage is shown to be particularly suited for this process

    An evaluation of two-channel ChIP-on-chip and DNA methylation microarray normalization strategies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The combination of chromatin immunoprecipitation with two-channel microarray technology enables genome-wide mapping of binding sites of DNA-interacting proteins (ChIP-on-chip) or sites with methylated CpG di-nucleotides (DNA methylation microarray). These powerful tools are the gateway to understanding gene transcription regulation. Since the goals of such studies, the sample preparation procedures, the microarray content and study design are all different from transcriptomics microarrays, the data pre-processing strategies traditionally applied to transcriptomics microarrays may not be appropriate. Particularly, the main challenge of the normalization of "regulation microarrays" is (i) to make the data of individual microarrays quantitatively comparable and (ii) to keep the signals of the enriched probes, representing DNA sequences from the precipitate, as distinguishable as possible from the signals of the un-enriched probes, representing DNA sequences largely absent from the precipitate.</p> <p>Results</p> <p>We compare several widely used normalization approaches (VSN, LOWESS, quantile, T-quantile, Tukey's biweight scaling, Peng's method) applied to a selection of regulation microarray datasets, ranging from DNA methylation to transcription factor binding and histone modification studies. Through comparison of the data distributions of control probes and gene promoter probes before and after normalization, and assessment of the power to identify known enriched genomic regions after normalization, we demonstrate that there are clear differences in performance between normalization procedures.</p> <p>Conclusion</p> <p>T-quantile normalization applied separately on the channels and Tukey's biweight scaling outperform other methods in terms of the conservation of enriched and un-enriched signal separation, as well as in identification of genomic regions known to be enriched. T-quantile normalization is preferable as it additionally improves comparability between microarrays. In contrast, popular normalization approaches like quantile, LOWESS, Peng's method and VSN normalization alter the data distributions of regulation microarrays to such an extent that using these approaches will impact the reliability of the downstream analysis substantially.</p

    Transforaminal endoscopic surgery for symptomatic lumbar disc herniations: a systematic review of the literature

    Get PDF
    The study design includes a systematic literature review. The objective of the study was to evaluate the effectiveness of transforaminal endoscopic surgery and to compare this with open microdiscectomy in patients with symptomatic lumbar disc herniations. Transforaminal endoscopic techniques for patients with symptomatic lumbar disc herniations have become increasingly popular. The literature has not yet been systematically reviewed. A comprehensive systematic literature search of the MEDLINE and EMBASE databases was performed up to May 2008. Two reviewers independently checked all retrieved titles and abstracts and relevant full text articles for inclusion criteria. Included articles were assessed for quality and outcomes were extracted by the two reviewers independently. One randomized controlled trial, 7 non-randomized controlled trials and 31 observational studies were identified. Studies were heterogeneous regarding patient selection, indications, operation techniques, follow-up period and outcome measures and the methodological quality of these studies was poor. The eight trials did not find any statistically significant differences in leg pain reduction between the transforaminal endoscopic surgery group (89%) and the open microdiscectomy group (87%); overall improvement (84 vs. 78%), re-operation rate (6.8 vs. 4.7%) and complication rate (1.5 vs. 1%), respectively. In conclusion, current evidence on the effectiveness of transforaminal endoscopic surgery is poor and does not provide valid information to either support or refute using this type of surgery in patients with symptomatic lumbar disc herniations. High-quality randomized controlled trials with sufficiently large sample sizes are direly needed to evaluate if transforaminal endoscopic surgery is more effective than open microdiscectomy

    Benchmark performance of low-cost Sb2Se3 photocathodes for unassisted solar overall water splitting

    Get PDF
    Determining cost-effective semiconductors exhibiting desirable properties for commercial photoelectrochemical water splitting remains a challenge. Herein, we report a Sb2Se3 semiconductor that satisfies most requirements for an ideal high-performance photoelectrode, including a small band gap and favourable cost, optoelectronic properties, processability, and photocorrosion stability. Strong anisotropy, a major issue for Sb2Se3, is resolved by suppressing growth kinetics via close space sublimation to obtain high-quality compact thin films with favourable crystallographic orientation. The Sb2Se3 photocathode exhibits a high photocurrent density of almost 30mAcm(-2) at 0V against the reversible hydrogen electrode, the highest value so far. We demonstrate unassisted solar overall water splitting by combining the optimised Sb2Se3 photocathode with a BiVO4 photoanode, achieving a solar-to-hydrogen efficiency of 1.5% with stability over 10h under simulated 1 sun conditions employing a broad range of solar fluxes. Low-cost Sb2Se3 can thus be an attractive breakthrough material for commercial solar fuel production. While photoelectrochemical water splitting offers an integrated means to convert sunlight to a renewable fuel, cost-effective light-absorbers are rare. Here, authors report Sb2Se3 photocathodes for high-performance photoelectrochemical water splitting devices

    A Standardised Procedure for Evaluating Creative Systems: Computational Creativity Evaluation Based on What it is to be Creative

    Get PDF
    Computational creativity is a flourishing research area, with a variety of creative systems being produced and developed. Creativity evaluation has not kept pace with system development with an evident lack of systematic evaluation of the creativity of these systems in the literature. This is partially due to difficulties in defining what it means for a computer to be creative; indeed, there is no consensus on this for human creativity, let alone its computational equivalent. This paper proposes a Standardised Procedure for Evaluating Creative Systems (SPECS). SPECS is a three-step process: stating what it means for a particular computational system to be creative, deriving and performing tests based on these statements. To assist this process, the paper offers a collection of key components of creativity, identified empirically from discussions of human and computational creativity. Using this approach, the SPECS methodology is demonstrated through a comparative case study evaluating computational creativity systems that improvise music

    Isoforms of U1-70k control subunit dynamics in the human spliceosomal U1 snRNP

    Get PDF
    Most human protein-encoding genes contain multiple exons that are spliced together, frequently in alternative arrangements, by the spliceosome. It is established that U1 snRNP is an essential component of the spliceosome, in human consisting of RNA and ten proteins, several of which are post- translationally modified and exist as multiple isoforms. Unresolved and challenging to investigate are the effects of these post translational modifications on the dynamics, interactions and stability of the particle. Using mass spectrometry we investigate the composition and dynamics of the native human U1 snRNP and compare native and recombinant complexes to isolate the effects of various subunits and isoforms on the overall stability. Our data reveal differential incorporation of four protein isoforms and dynamic interactions of subunits U1-A, U1-C and Sm-B/B’. Results also show that unstructured post- ranslationally modified C-terminal tails are responsible for the dynamics of Sm-B/B’ and U1-C and that their interactions with the Sm core are controlled by binding to different U1-70k isoforms and their phosphorylation status in vivo. These results therefore provide the important functional link between proteomics and structure as well as insight into the dynamic quaternary structure of the native U1 snRNP important for its function.This work was funded by: BBSRC (OVM), BBSRC and EPSRC (HH and NM), EU Prospects (HH), European Science Foundation (NM), the Royal Society (CVR), and fellowship from JSPS and HFSP (YM and DAPK respectively)

    Targeting Sialic Acid Dependent and Independent Pathways of Invasion in Plasmodium falciparum

    Get PDF
    The pathology of malaria is a consequence of the parasitaemia which develops through the cyclical asexual replication of parasites in a patient's red blood cells. Multiple parasite ligand-erythrocyte receptor interactions must occur for successful Plasmodium invasion of the human red cell. Two major malaria ligand families have been implicated in these variable ligand-receptor interactions used by Plasmodium falciparum to invade human red cells: the micronemal proteins from the Erythrocyte Binding Ligands (EBL) family and the rhoptry proteins from the Reticulocyte binding Homolog (PfRH) family. Ligands from the EBL family largely govern the sialic acid (SA) dependent pathways of invasion and the RH family ligands (except for RH1) mediate SA independent invasion. In an attempt to dissect out the invasion inhibitory effects of antibodies against ligands from both pathways, we have used EBA-175 and RH5 as model members of each pathway. Mice were immunized with either region II of EBA-175 produced in Pichia pastoris or full-length RH5 produced by the wheat germ cell-free system, or a combination of the two antigens to look for synergistic inhibitory effects of the induced antibodies. Sera obtained from these immunizations were tested for native antigen recognition and for efficacy in invasion inhibition assays. Results obtained show promise for the potential use of such hybrid vaccines to induce antibodies that can block multiple parasite ligand-red cell receptor interactions and thus inhibit parasite invasion

    Plasmodium falciparum Merozoite Invasion Is Inhibited by Antibodies that Target the PfRh2a and b Binding Domains

    Get PDF
    Plasmodium falciparum, the causative agent of the most severe form of malaria in humans invades erythrocytes using multiple ligand-receptor interactions. The P. falciparum reticulocyte binding-like homologue proteins (PfRh or PfRBL) are important for entry of the invasive merozoite form of the parasite into red blood cells. We have analysed two members of this protein family, PfRh2a and PfRh2b, and show they undergo a complex series of proteolytic cleavage events before and during merozoite invasion. We show that PfRh2a undergoes a cleavage event in the transmembrane region during invasion consistent with activity of the membrane associated PfROM4 protease that would result in release of the ectodomain into the supernatant. We also show that PfRh2a and PfRh2b bind to red blood cells and have defined the erythrocyte-binding domain to a 15 kDa region at the N-terminus of each protein. Antibodies to this receptor-binding region block merozoite invasion demonstrating the important function of this domain. This region of PfRh2a and PfRh2b has potential in a combination vaccine with other erythrocyte binding ligands for induction of antibodies that would block a broad range of invasion pathways for P. falciparum into human erythrocytes

    Transepithelial Transport and Enzymatic Detoxification of Gluten in Gluten-Sensitive Rhesus Macaques

    Get PDF
    In a previous report, we characterized a condition of gluten sensitivity in juvenile rhesus macaques that is similar in many respects to the human condition of gluten sensitivity, celiac disease. This animal model of gluten sensitivity may therefore be useful toward studying both the pathogenesis and the treatment of celiac disease. Here, we perform two pilot experiments to demonstrate the potential utility of this model for studying intestinal permeability toward an immunotoxic gluten peptide and pharmacological detoxification of gluten in vivo by an oral enzyme drug candidate.Intestinal permeability was investigated in age-matched gluten-sensitive and control macaques by using mass spectrometry to detect and quantify an orally dosed, isotope labeled 33-mer gluten peptide delivered across the intestinal epithelium to the plasma. The protective effect of a therapeutically promising oral protease, EP-B2, was evaluated in a gluten-sensitive macaque by administering a daily gluten challenge with or without EP-B2 supplementation. ELISA-based antibody assays and blinded clinical evaluations of this macaque and of an age-matched control were conducted to assess responses to gluten.Labeled 33-mer peptide was detected in the plasma of a gluten-sensitive macaque, both in remission and during active disease, but not in the plasma of healthy controls. Administration of EP-B2, but not vehicle, prevented clinical relapse in response to a dietary gluten challenge. Unexpectedly, a marked increase in anti-gliadin (IgG and IgA) and anti-transglutaminase (IgG) antibodies was observed during the EP-B2 treatment phase.Gluten-sensitive rhesus macaques may be an attractive resource for investigating important aspects of celiac disease, including enhanced intestinal permeability and pharmacology of oral enzyme drug candidates. Orally dosed EP-B2 exerts a protective effect against ingested gluten. Limited data suggest that enhanced permeability of short gluten peptides generated by gastrically active glutenases may trigger an elevated antibody response, but that these antibodies are not necessarily causative of clinical illness

    Zinc and silica are active components to efficiently treat in vitro simulated eroded dentin.

    Get PDF
    Objectives: Biomaterials for treating dentin hypersensitivity and dentin wear were evaluated, to efficiently occlude the dentinal tubules and to increase dentin resistance to abrasion. Materials and Methods: 24 dentin surfaces were treated with EDTA to expose dentinal tubules, and were: 1) non-brushed, 2) brushed with distilled water, or with pastes containing 3) Monetite, 4) Brushite, 5) Zn-Monetite, 6) Zn-Brushite, 7) Silica-Brushite and 8) NovaMin®. Topography, nanomechanical and chemical analysis were assessed on dentin surfaces (n=3) after artificial saliva immersion for 24 h, and after citric acid challenge. 21 further dentin specimens were created to evaluate dentin permeability after brushing, saliva storage and acid application (n=3). ANOVA, Student-Newman-Keuls (p<0.05) and Student t-test (p<0.001) were used. Results: Particles containing major proportion of silica attained intratubular occlusion by carbonate crystals (Raman carbonate peak heights: 15.17 and 19.24 au; complex modulus: 110 and 140 GPa, at intratubular dentin). When brushing with pastes containing higher proportion of silica or zinc, phosphate calcium compounds were encountered into tubules and over dentin surfaces (Raman intratubular phosphate peak heights: 49 to 70 au, and at the intertubular dentin: 78 to 92). The formed carbonated apatite and calcium phosphate layer were resistant to citric acid application. Zinc compounds drastically increased tubule occlusion, decreased dentin permeability (up to 30%) and augmented mechanical properties at the intertubular dentin (90-130 GPa), it was maintained after acid challenging. Conclusions: Zinc-containing pastes occluded dentinal tubules and improved dentin mechanical properties. Clinical Relevance: Using zinc as an active component to treat eroded dentin is encouraged.Projects RTC-2014-1731-1 and MAT2014-52036-P supported by the Ministry of Economy and Competitiveness and European Regional Development Fund
    corecore