123 research outputs found

    Effectiveness of an electronic patient-centred self-management tool for gout sufferers: A cluster randomised controlled trail protocol

    Full text link
    © © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted. Introduction Gout is increasing despite effective therapies to lower serum urate concentrations to 0.36 mmol/L or less, which, if sustained, significantly reduces acute attacks of gout. Adherence to urate-lowering therapy (ULT) is poor, with rates of less than 50% 1 year after initiation of ULT. Attempts to increase adherence in gout patients have been disappointing. We aim to evaluate the effectiveness of use of a personal, self-management, a'smartphone' application (app) to achieve target serum urate concentrations in people with gout. We hypothesise that personalised feedback of serum urate concentrations will improve adherence to ULT. Methods and analysisSetting and design Primary care. A prospective, cluster randomised (by general practitioner (GP) practices), controlled trial. Participants GP practices will be randomised to either intervention or control clusters with their patients allocated to the same cluster. Intervention The intervention group will have access to the Healthy.me app tailored for the self-management of gout. The control group patients will have access to the same app modified to remove all functions except the Gout Attack Diary. Primary and secondary outcomes The proportion of patients whose serum urate concentrations are less than or equal to 0.36 mmol/L after 6 months. Secondary outcomes will be proportions of patients achieving target urate concentrations at 12 months, ULT adherence rates, serum urate concentrations at 6 and 12 months, rates of attacks of gout, quality of life estimations and process and economic evaluations. The study is designed to detect a ≥30% improvement in the intervention group above the expected 50% achievement of target serum urate at 6 months in the control group: power 0.80, significance level 0.05, assumed a'dropout' rate 20%. Ethics and dissemination This study has been approved by the University of New South Wales Human Research Ethics Committee. Study findings will be disseminated in international conferences and peer-reviewed journal. Trial registration number ACTRN12616000455460

    Serum free light chain levels and renal function at diagnosis in patients with multiple myeloma

    Get PDF
    Background: Renal impairment (RI) is common in multiple myeloma (MM) and is associated with poor survival. This study reports the associations between renal function and disease characteristics including serum free light chain (FLC) level at diagnosis in patients with MM. Methods: Using data from the Medical Research Council Myeloma IX trial, a multicentre, randomized, open-label, phase III and factorial-design trial, we assessed the relationships between renal function, demographic, and disease characteristics, including serum FLC levels, in 1595 newly diagnosed MM patients. Multivariable linear regression was utilised to identify factors that were associated with renal function at diagnosis. A receiver operating characteristic curve (ROC) was used to identify the optimal threshold for serum FLC level at diagnosis to predict severe RI. Results: 52.8% of patients had an estimated glomerular filtration rate (eGFR) ≥60 ml/min/1.73 m2 (no RI), 37.3% an eGFR 30–59 ml/min/1.73 m2 (mild to moderate RI), and 9.8% an eGFR  800 mg/L as the optimal cut-off associated with severe RI (area under curve 0.86, 95% confidence interval 0.77–0.84). Conclusion: There was a strong relationship between higher serum FLC levels at diagnosis and the severity of RI that was irrespective of the paraprotein type. We report an increased risk of severe RI in patients presenting with serum FLC levels above 800 mg/L at diagnosis

    Proof of concept, randomized, placebo-controlled study of the effect of simvastatin on the course of age-related macular degeneration

    Get PDF
    BACKGROUND: HMG Co-A reductase inhibitors are ubiquitous in our community yet their potential role in age-related macular degeneration (AMD) remains to be determined. METHODOLOGY/PRINCIPAL FINDINGS: OBJECTIVES: To evaluate the effect of simvastatin on AMD progression and the effect modification by polymorphism in apolipoprotein E (ApoE) and complement factor H (CFH) genes. DESIGN: A proof of concept double-masked randomized controlled study. PARTICIPANTS: 114 participants aged 53 to 91 years, with either bilateral intermediate AMD or unilateral non-advanced AMD (with advanced AMD in fellow eye), BCVA ≥ 20/60 in at least one eye, and a normal lipid profile. INTERVENTION: Simvastatin 40 mg/day or placebo, allocated 1:1. MAIN OUTCOME MEASURES: Progression of AMD either to advanced AMD or in severity of non-advanced AMD. Results. The cumulative AMD progression rates were 70% in the placebo and 54% in the simvastatin group. Intent to treat multivariable logistic regression analysis, adjusted for age, sex, smoking and baseline AMD severity, showed a significant 2-fold decrease in the risk of progression in the simvastatin group: OR 0.43 (0.18-0.99), p = 0.047. Post-hoc analysis stratified by baseline AMD severity showed no benefit from treatment in those who had advanced AMD in the fellow eye before enrolment: OR 0.97 (0.27-3.52), p = 0.96, after adjusting for age, sex and smoking. However, there was a significant reduction in the risk of progression in the bilateral intermediate AMD group compared to placebo [adjusted OR 0.23 (0.07-0.75), p = 0.015]. The most prominent effect was observed amongst those who had the CC (Y402H) at risk genotype of the CFH gene [OR 0.08 (0.02-0.45), p = 0.004]. No evidence of harm from simvastatin intervention was detected. CONCLUSION/SIGNIFICANCE: Simvastatin may slow progression of non-advanced AMD, especially for those with the at risk CFH genotype CC (Y402H). Further exploration of the potential use of statins for AMD, with emphasis on genetic subgroups, is warranted. TRIAL REGISTRATION: Australian New Zealand Clinical Trial Registry (ANZCTR) ACTRN1260500032065

    The Brain Effects of Laser Acupuncture in Healthy Individuals: An fMRI Investigation

    Get PDF
    Background: As laser acupuncture is being increasingly used to treat mental disorders, we sought to determine whether it has a biologically plausible effect by using functional magnetic resonance imaging (fMRI) to investigate the cerebral activation patterns from laser stimulation of relevant acupoints. Methodology/Principal Findings: Ten healthy subjects were randomly stimulated with a fibreoptic infrared laser on 4 acupoints (LR14, CV14, LR8 and HT7) used for depression following the principles of Traditional Chinese Medicine (TCM), and 1 control non-acupoint (sham point) in a blocked design (alternating verum laser and placebo laser/rest blocks), while the blood oxygenation level-dependent (BOLD) fMRI response was recorded from the whole brain on a 3T scanner. Many of the acupoint laser stimulation conditions resulted in different patterns of neural activity. Regions with significantly increased activation included the limbic cortex (cingulate) and the frontal lobe (middle and superior frontal gyrus). Laser acupuncture tended to be associated with ipsilateral brain activation and contralateral deactivation that therefore cannot be simply attributed to somatosensory stimulation. Conclusions/Significance: We found that laser stimulation of acupoints lead to activation of frontal-limbic-striatal brain regions, with the pattern of neural activity somewhat different for each acupuncture point. This is the first study to investigate laser acupuncture on a group of acupoints useful in the management of depression. Differing activity patterns depending on the acupoint site were demonstrated, suggesting that neurological effects vary with the site of stimulation. The mechanisms of activation and deactivation and their effects on depression warrant further investigation.5 page(s

    Yeast thioredoxin reductase Trr1p controls TORC1-regulated processes

    Get PDF
    The thioredoxin system plays a predominant role in the control of cellular redox status. Thioredoxin reductase fuels the system with reducing power in the form of NADPH. The TORC1 complex promotes growth and protein synthesis when nutrients, particularly amino acids, are abundant. It also represses catabolic processes, like autophagy, which are activated during starvation. We analyzed the impact of yeast cytosolic thioredoxin reductase TRR1 deletion under different environmental conditions. It shortens chronological life span and reduces growth in grape juice fermentation. TRR1 deletion has a global impact on metabolism during fermentation. As expected, it reduces oxidative stress tolerance, but a compensatory response is triggered, with catalase and glutathione increasing. Unexpectedly, TRR1 deletion causes sensitivity to the inhibitors of the TORC1 pathway, such as rapamycin. This correlates with low Tor2p kinase levels and indicates a direct role of Trr1p in its stability. Markers of TORC1 activity, however, suggest increased TORC1 activity. The autophagy caused by nitrogen starvation is reduced in the trr1Δ mutant. Ribosomal protein Rsp6p is dephosphorylated in the presence of rapamycin. This dephosphorylation diminishes in the TRR1 deletion strain. These results show a complex network of interactions between thioredoxin reductase Trr1p and the processes controlled by TOR

    Histological Evaluation of Diabetic Neurodegeneration in the Retina of Zucker Diabetic Fatty (ZDF) Rats

    Get PDF
    In diabetes, retinal dysfunctions exist prior to clinically detectable vasculopathy, however the pathology behind these functional deficits is still not fully established. Previously, our group published a detailed study on the retinal histopathology of type 1 diabetic (T1D) rat model, where specific alterations were detected. Although the majority of human diabetic patients have type 2 diabetes (T2D), similar studies on T2D models are practically absent. To fill this gap, we examined Zucker Diabetic Fatty (ZDF) rats - a model for T2D - by immunohistochemistry at the age of 32 weeks. Glial reactivity was observed in all diabetic specimens, accompanied by an increase in the number of microglia cells. Prominent outer segment degeneration was detectable with changes in cone opsin expression pattern, without a decrease in the number of labelled elements. The immunoreactivity of AII amacrine cells was markedly decreased and changes were detectable in the number and staining of some other amacrine cell subtypes, while most other cells examined did not show any major alterations. Overall, the retinal histology of ZDF rats shows a surprising similarity to T1D rats indicating that despite the different evolution of the disease, the neuroretinal cells affected are the same in both subtypes of diabetes

    The UK Biobank imaging enhancement of 100,000 participants: rationale, data collection, management and future directions

    Get PDF
    UK Biobank is a population-based cohort of half a million participants aged 40–69 years recruited between 2006 and 2010. In 2014, UK Biobank started the world’s largest multi-modal imaging study, with the aim of re-inviting 100,000 participants to undergo brain, cardiac and abdominal magnetic resonance imaging, dual-energy X-ray absorptiometry and carotid ultrasound. The combination of large-scale multi-modal imaging with extensive phenotypic and genetic data offers an unprecedented resource for scientists to conduct health-related research. This article provides an in-depth overview of the imaging enhancement, including the data collected, how it is managed and processed, and future direction

    Immunoprotectivity of HLA-A2 CTL Peptides Derived from Respiratory Syncytial Virus Fusion Protein in HLA-A2 Transgenic Mouse

    Get PDF
    Identification of HLA-restricted CD8+ T cell epitopes is important to study RSV-induced immunity and illness. We algorithmically analyzed the sequence of the fusion protein (F) of respiratory syncytial virus (RSV) and generated synthetic peptides that can potentially bind to HLA-A*0201. Four out of the twenty-five 9-mer peptides tested: peptides 3 (F33–41), 13 (F214–222), 14 (F273–281), and 23 (F559–567), were found to bind to HLA-A*0201 with moderate to high affinity and were capable of inducing IFN-γ and IL-2 secretion in lymphocytes from HLA-A*0201 transgenic (HLA-Tg) mice pre-immunized with RSV or recombinant adenovirus expressing RSV F. HLA-Tg mice were immunized with these four peptides and were found to induce both Th1 and CD8+ T cell responses in in vitro secondary recall. Effector responses induced by these peptides were observed to confer differential protection against live RSV challenge. These peptides also caused better recovery of body weight loss induced by RSV. A significant reduction of lung viral load was observed in mice immunized with peptide 23, which appeared to enhance the levels of inflammatory chemokines (CCL17, CCL22, and IL-18) but did not increase eosinophil infiltration in the lungs. Whereas, significant reduction of infiltrated eosinophils induced by RSV infection was found in mice pre-immunized with peptide 13. Our results suggest that HLA-A2-restricted epitopes of RSV F protein could be useful for the development of epitope-based RSV vaccine
    corecore