1,528 research outputs found
Early detection and environmental drivers of sewage fungus outbreaks in rivers
1. Sewage effluent is a major ongoing threat to water quality and biodiversity in freshwater environments. It can cause outbreaks of sewage fungus (fungus-like bacteria which form macroscopic masses) but, until now, these were only qualitatively recorded from visual inspection, ignoring microscopic forms.
2. Here, we used an innovative method that combines machine learning, microscopy and flow cytometry, to rapidly and efficiently quantify the presence and abundance of sewage fungus in rivers. Our study involved 11 rivers with (n = 6) and without (n = 5) sewage input in England over four sampling occasions.
3. We were able to detect and enumerate the filaments before masses became visible to the naked eye and, as expected, we found a higher number of filaments downstream of sites where treated sewage was offloaded into the river. Therefore, our detection method could be used as a ‘canary in the coal mine’ for future outbreaks allowing early intervention.
4. Combining our quantitative data on filaments with data on the physical and chemical parameters of the rivers, we found that high conductivity, sulphate, nitrates and TDS were associated with the presence and proliferation of sewage fungus. This information can be extremely useful for regulatory bodies and water companies to develop mitigating strategies and action to prevent future outbreaks
General analysis of signals with two leptons and missing energy at the Large Hadron Collider
A signal of two leptons and missing energy is challenging to analyze at the
Large Hadron Collider (LHC) since it offers only few kinematical handles. This
signature generally arises from pair production of heavy charged particles
which each decay into a lepton and a weakly interacting stable particle. Here
this class of processes is analyzed with minimal model assumptions by
considering all possible combinations of spin 0, 1/2 or 1, and of weak
iso-singlets, -doublets or -triplets for the new particles. Adding to existing
work on mass and spin measurements, two new variables for spin determination
and an asymmetry for the determination of the couplings of the new particles
are introduced. It is shown that these observables allow one to independently
determine the spin and the couplings of the new particles, except for a few
cases that turn out to be indistinguishable at the LHC. These findings are
corroborated by results of an alternative analysis strategy based on an
automated likelihood test.Comment: 18 pages, 3 figures, LaTe
Synthetic three-dimensional atomic structures assembled atom by atom
We demonstrate the realization of large, fully loaded, arbitrarily-shaped
three-dimensional arrays of single atoms. Using holographic methods and
real-time, atom-by-atom, plane-by-plane assembly, we engineer atomic structures
with up to 72 atoms separated by distances of a few micrometres. Our method
allows for high average filling fractions and the unique possibility to obtain
defect-free arrays with high repetition rates. These results find immediate
application for the quantum simulation of spin Hamiltonians using Rydberg atoms
in state-of-the-art platforms, and are very promising for quantum-information
processing with neutral atoms.Comment: 5 pages, 3 figure
Supersymmetric mass spectra and the seesaw type-I scale
We calculate supersymmetric mass spectra with cMSSM boundary conditions and a
type-I seesaw mechanism added to explain current neutrino data. Using
published, estimated errors on SUSY mass observables for a combined LHC+ILC
analysis, we perform a theoretical analysis to identify parameter
regions where pure cMSSM and cMSSM plus seesaw type-I might be distinguishable
with LHC+ILC data. The most important observables are determined to be the
(left) smuon and selectron masses and the splitting between them, respectively.
Splitting in the (left) smuon and selectrons is tiny in most of cMSSM parameter
space, but can be quite sizeable for large values of the seesaw scale,
. Thus, for very roughly GeV hints for type-I
seesaw might appear in SUSY mass measurements. Since our numerical results
depend sensitively on forecasted error bars, we discuss in some detail the
accuracies, which need to be achieved, before a realistic analysis searching
for signs of type-I seesaw in SUSY spectra can be carried out.Comment: 17 pages, 7 figure
AXIOM: advanced X-ray imaging of the magnetosphere
Planetary plasma and magnetic field environments can be studied in two complementary ways—by in situ measurements, or by remote sensing. While the former provide precise information about plasma behaviour, instabilities and dynamics on local scales, the latter offers the global view necessary to understand the overall interaction of the magnetospheric plasma with the solar wind. Some parts of the Earth’s magnetosphere have been remotely sensed, but the majority remains unexplored by this type of measurements. Here we propose a novel and more elegant approach employing remote X-ray imaging techniques, which are now possible thanks to the relatively recent discovery of solar wind charge exchange X-ray emissions in the vicinity of the Earth’s magnetosphere. In this article we describe how an appropriately designed and located X-ray telescope, supported by simultaneous in situ measurements of the solar wind, can be used to image the dayside magnetosphere, magnetosheath and bow shock, with a temporal and spatial resolution sufficient to address several key outstanding questions concerning how the solar wind interacts with the Earth’s magnetosphere on a global level. Global images of the dayside magnetospheric boundaries require vantage points well outside the magnetosphere. Our studies have led us to propose ‘AXIOM: Advanced X-ray Imaging of the Magnetosphere’, a concept mission using a Vega launcher with a LISA Pathfinder-type Propulsion Module to place the spacecraft in a Lissajous orbit around the Earth–Moon L1 point. The model payload consists of an X-ray Wide Field Imager, capable of both imaging and spectroscopy, and an in situ plasma and magnetic field measurement package. This package comprises a Proton-Alpha Sensor, designed to measure the bulk properties of the solar wind, an Ion Composition Analyser, to characterise the minor ion populations in the solar wind that cause charge exchange emission, and a Magnetometer, designed to measure the strength and direction of the solar wind magnetic field. We also show simulations that demonstrate how the proposed X-ray telescope design is capable of imaging the predicted emission from the dayside magnetosphere with the sensitivity and cadence required to achieve the science goals of the mission
AXIOM: Advanced X-Ray Imaging Of the Magnetosheath
AXIOM (Advanced X-ray Imaging Of the Magnetosphere) is a concept mission which aims to explain how the Earth's magnetosphere responds to the changing impact of the solar wind using a unique method never attempted before; performing wide-field soft X-ray imaging and spectroscopy of the magnetosheath. magnetopause and bow shock at high spatial and temporal resolution. Global imaging of these regions is possible because of the solar wind charge exchange (SWCX) process which produces elevated soft X-ray emission from the interaction of high charge-state solar wind ions with primarily neutral hydrogen in the Earth's exosphere and near-interplanetary space
Role of protease activated receptor-2 in lymph node metastasis of uterine cervical cancers
<p>Abstract</p> <p>Background</p> <p>Protease activated receptor-2 (PAR-2) has been implicated in cellular proliferation, invasion and metastasis in various tumors. Lymph node metastasis is an important patient prognostic factor for uterine cervical cancers. This prompted us to study the role of PAR-2 in lymph node metastasis of uterine cervical cancers.</p> <p>Methods</p> <p>Thirty patients underwent surgery for uterine cervical cancers. PAR-2 histoscores and mRNA levels were determined by immunohistochemistry and real-time reverse transcription-polymerase chain reaction, respectively. Patient prognosis was analyzed with a 48-month survival rate.</p> <p>Results</p> <p>PAR-2 histoscores and mRNA levels significantly (<it>P </it>< 0.05) increased in 12 of 30 metastatic lymph node lesions from the corresponding primary tumor. The 48-month survival rate of the 12 patients with increased PAR-2 levels in metastatic lymph nodes was 42%, while the rate of the other 18 patients with no change in PAR-2 levels was 82%, regardless of histopathological type.</p> <p>Conclusion</p> <p>PAR-2 might work on lymph node metastasis of uterine cervical cancers, and is considered to be a novel prognostic indicator for uterine cervical cancers.</p
Cancer Treatment and Bone Health
Considerable advances in oncology over recent decades have led to improved survival, while raising concerns about long-term consequences of anticancer treatments. In patients with breast or prostate malignancies, bone health is a major issue due to the high risk of bone metastases and the frequent prolonged use of hormone therapies that alter physiological bone turnover, leading to increased fracture risk. Thus, the onset of cancer treatment-induced bone loss (CTIBL) should be considered by clinicians and recent guidelines should be routinely applied to these patients. In particular, baseline and periodic follow-up evaluations of bone health parameters enable the identification of patients at high risk of osteoporosis and fractures, which can be prevented by the use of bone-targeting agents (BTAs), calcium and vitamin D supplementation and modifications of lifestyle. This review will focus upon the pathophysiology of breast and prostate cancer treatment-induced bone loss and the most recent evidence about effective preventive and therapeutic strategies
Adding abiraterone or docetaxel to long-term hormone therapy for prostate cancer: directly randomised data from the STAMPEDE multi-arm, multi-stage platform protocol.
Adding abiraterone acetate with prednisolone (AAP) or docetaxel with prednisolone (DocP) to standard-of-care (SOC) each improved survival in STAMPEDE: a multi-arm multi-stage platform randomised controlled protocol recruiting patients with high-risk locally advanced or metastatic PCa starting long-term androgen deprivation therapy (ADT). The protocol provides the only direct, randomised comparative data of SOC+AAP vs SOC+DocP
Recommended from our members
Using ultra-low frequency waves and their characteristics to diagnose key physics of substorm onset
Substorm onset is marked in the ionosphere by the sudden brightening of an existing auroral arc or the creation of a new auroral arc. Also present is the formation of auroral beads, proposed to play a key role in the detonation of the substorm, as well as the development of the large-scale substorm current wedge (SCW ), invoked to carry the current diversion. Both these phenomena, auroral beads and the SCW, have been intimately related to ultra-low frequency (ULF) waves of specific frequencies as observed by ground-based magnetometers. We present a case study of the absolute and relative timing of Pi1 and Pi2 ULF wave bands with regard to a small substorm expansion phase onset. We find that there is both a location and frequency dependence for the onset of ULF waves. A clear epicentre is observed in specific wave frequencies concurrent with the brightening of the substorm onset arc and the presence of “auroral beads”. At higher and lower wave frequencies, different epicentre patterns are revealed, which we conclude demonstrate different characteristics of the onset process; at higher frequencies, this epicentre may demonstrate phase mixing, and at intermediate and lower frequencies these epicentres are characteristic of auroral beads and cold plasma approximation of the “Tamao travel time” from near-earth neutral line reconnection and formation of the SCW
- …