248 research outputs found

    Energy Consumption Forecasting Using Ensemble Learning Algorithms

    Get PDF
    DCAI 2019: Distributed Computing and Artificial Intelligence, 16th International Conference, Special SessionsThe increase of renewable energy sources of intermittent nature has brought several new challenges for power and energy systems. In order to deal with the variability from the generation side, there is the need to balance it by managing consumption appropriately. Forecasting energy consumption becomes, therefore, more relevant than ever. This paper presents and compares three different ensemble learning methods, namely random forests, gradient boosted regression trees and Adaboost. Hour-ahead electricity load forecasts are presented for the building N of GECAD at ISEP campus. The performance of the forecasting models is assessed, and results show that the Adaboost model is superior to the other considered models for the one-hour ahead forecasts. The results of this study compared to previous works indicates that ensemble learning methods are a viable choice for short-term load forecast.This work has received funding from National Funds through FCT (Fundaçao da Ciencia e Tecnologia) under the project SPET – 29165, call SAICT 2017.info:eu-repo/semantics/publishedVersio

    The Influence of Spin-Labeled Fluorene Compounds on the Assembly and Toxicity of the Aβ Peptide

    Get PDF
    The deposition and oligomerization of amyloid β (Aβ) peptide plays a key role in the pathogenesis of Alzheimer's disease (AD). Aβ peptide arises from cleavage of the membrane-associated domain of the amyloid precursor protein (APP) by β and γ secretases. Several lines of evidence point to the soluble Aβ oligomer (AβO) as the primary neurotoxic species in the etiology of AD. Recently, we have demonstrated that a class of fluorene molecules specifically disrupts the AβO species. Methodology/Principal Findings To achieve a better understanding of the mechanism of action of this disruptive ability, we extend the application of electron paramagnetic resonance (EPR) spectroscopy of site-directed spin labels in the Aβ peptide to investigate the binding and influence of fluorene compounds on AβO structure and dynamics. In addition, we have synthesized a spin-labeled fluorene (SLF) containing a pyrroline nitroxide group that provides both increased cell protection against AβO toxicity and a route to directly observe the binding of the fluorene to the AβO assembly. We also evaluate the ability of fluorenes to target multiple pathological processes involved in the neurodegenerative cascade, such as their ability to block AβO toxicity, scavenge free radicals and diminish the formation of intracellular AβO species. Conclusions Fluorene modified with pyrroline nitroxide may be especially useful in counteracting Aβ peptide toxicity, because they posses both antioxidant properties and the ability to disrupt AβO species

    Quantum Dots Do Not Affect the Behaviour of Mouse Embryonic Stem Cells and Kidney Stem Cells and Are Suitable for Short-Term Tracking

    Get PDF
    Quantum dots (QDs) are small nanocrystals widely used for labelling cells in order to enable cell tracking in complex environments in vitro, ex vivo and in vivo. They present many advantages over traditional fluorescent markers as they are resistant to photobleaching and have narrow emission spectra. Although QDs have been used effectively in cell tracking applications, their suitability has been questioned by reports showing they can affect stem cell behaviour and can be transferred to neighbouring cells. Using a variety of cellular and molecular biology techniques, we have investigated the effect of QDs on the proliferation and differentiation potential of two stem cell types: mouse embryonic stem cells and tissue-specific stem cells derived from mouse kidney. We have also tested if QDs released from living or dead cells can be taken up by neighbouring cells, and we have determined if QDs affect the degree of cell-cell fusion; this information is critical in order to assess the suitability of QDs for stem cell tracking. We show here that QDs have no effect on the viability, proliferation or differentiation potential of the two stem cell types. Furthermore, we show that the extent of transfer of QDs to neighbouring cells is <4%, and that QDs do not increase the degree of cell-cell fusion. However, although the QDs have a high labelling efficiency (>85%), they are rapidly depleted from both stem cell populations. Taken together, our results suggest that QDs are effective cell labelling probes that are suitable for short-term stem cell tracking

    Gene expression throughout a vertebrate's embryogenesis

    Get PDF
    Abstract Background Describing the patterns of gene expression during embryonic development has broadened our understanding of the processes and patterns that define morphogenesis. Yet gene expression patterns have not been described throughout vertebrate embryogenesis. This study presents statistical analyses of gene expression during all 40 developmental stages in the teleost Fundulus heteroclitus using four biological replicates per stage. Results Patterns of gene expression for 7,000 genes appear to be important as they recapitulate developmental timing. Among the 45% of genes with significant expression differences between pairs of temporally adjacent stages, significant differences in gene expression vary from as few as five to more than 660. Five adjacent stages have disproportionately more significant changes in gene expression (&gt; 200 genes) relative to other stages: four to eight and eight to sixteen cell stages, onset of circulation, pre and post-hatch, and during complete yolk absorption. The fewest differences among adjacent stages occur during gastrulation. Yet, at stage 16, (pre-mid-gastrulation) the largest number of genes has peak expression. This stage has an over representation of genes in oxidative respiration and protein expression (ribosomes, translational genes and proteases). Unexpectedly, among all ribosomal genes, both strong positive and negative correlations occur. Similar correlated patterns of expression occur among all significant genes. Conclusions These data provide statistical support for the temporal dynamics of developmental gene expression during all stages of vertebrate development

    EphB6 Receptor Modulates Micro RNA Profile of Breast Carcinoma Cells

    Get PDF
    Breast carcinoma cells have a specific pattern of expression for Eph receptors and ephrin ligands. EphB6 has previously been characterized as a signature molecule for invasive breast carcinoma cells. The transcription of EphB6 is silenced in breast carcinoma cells and its re-expression leads to decreased invasiveness of MDA-MB-231 cells. Such differences in phenotypes of native and EphB6 expressing MDA-MB-231 cells relate to an altered profile of micro RNAs. Comparative hybridization of total RNA to slides containing all known miRNAs by using locked nucleic acid (LNA) miRCURY platform yielded a significantly altered profile of miRNAs in MDA-MB-231 cells stably transfected with EphB6. After applying a threshold of change and a p-value of <0.001, the list of significantly altered miRNAs included miR-16, miR-23a, miR-24, miR-26a, miR-29a, miR-100, miRPlus-E1172 and miRPlus-E1258. The array-based changes were validated by real-time qPCR of miR-16, miR-23a, miR-24 and miR-100. Except miRPlus-E1172 and miRPlus-E1258, the remaining six miRNAs have been observed in a variety of cancers. The biological relevance of target mRNAs was predicted by using a common-target selection approach that allowed the identification of SMARCA5, SMARCC1, eIF2C2, eIF2C4, eIF4EBP2, FKABP5, FKBP1A, TRIB1, TRIB2, TRIB3, BMPR2, BMPR1A and BMPR1B as important targets of a subset of significantly altered miRNAs. Quantitative PCR revealed that the levels of SMARCC1, eIFC4, eIF4EB2, FKBP1a, FKBP5, TRIB1, TRIB3, BMPR1a and BMPR2 transcripts were significantly decreased in MDA-MB-231 cells transfected with EphB6. These observations confirm targeting of specific mRNAs by miR-100, miR-23a, miR-16 and miR-24, and suggest that the kinase-deficient EphB6 receptor is capable of initiating signal transduction from the cell surface to the nucleus resulting in the altered expression of a variety of genes involved in tumorigenesis and invasion. The alterations in miRNAs and their target mRNAs also suggest indirect involvement of EphB6 in PI3K/Akt/mTOR pathways

    Y-Chromosome Evidence for Common Ancestry of Three Chinese Populations with a High Risk of Esophageal Cancer

    Get PDF
    High rates of esophageal cancer (EC) are found in people of the Henan Taihang Mountain, Fujian Minnan, and Chaoshan regions of China. Historical records describe great waves of populations migrating from north-central China (the Henan and Shanxi Hans) through coastal Fujian Province to the Chaoshan plain. Although these regions are geographically distant, we hypothesized that EC high-risk populations in these three areas could share a common ancestry. Accordingly, we used 16 East Asian-specific Y-chromosome biallelic markers (single nucleotide polymorphisms; Y-SNPs) and six Y-chromosome short tandem repeat (Y-STR) loci to infer the origin of the EC high-risk Chaoshan population (CSP) and the genetic relationship between the CSP and the EC high-risk Henan Taihang Mountain population (HTMP) and Fujian population (FJP). The predominant haplogroups in these three populations are O3*, O3e*, and O3e1, with no significant difference between the populations in the frequency of these genotypes. Frequency distribution and principal component analysis revealed that the CSP is closely related to the HTMP and FJP, even though the former is geographically nearer to other populations (Guangfu and Hakka clans). The FJP is between the CSP and HTMP in the principal component plot. The CSP, FJP and HTMP are more closely related to Chinese Hans than to minorities, except Manchu Chinese, and are descendants of Sino-Tibetans, not Baiyues. Correlation analysis, hierarchical clustering analysis, and phylogenetic analysis (neighbor-joining tree) all support close genetic relatedness among the CSP, FJP and HTMP. The network for haplogroup O3 (including O3*, O3e* and O3e1) showed that the HTMP have highest STR haplotype diversity, suggesting that the HTMP may be a progenitor population for the CSP and FJP. These findings support the potentially important role of shared ancestry in understanding more about the genetic susceptibility in EC etiology in high-risk populations and have implications for determining the molecular basis of this disease

    Differential Effects of Peptidoglycan Recognition Proteins on Experimental Atopic and Contact Dermatitis Mediated by Treg and Th17 Cells

    Get PDF
    Skin protects the body from the environment and is an important component of the innate and adaptive immune systems. Atopic dermatitis and contact dermatitis are among the most frequent inflammatory skin diseases and are both determined by multigenic predisposition, environmental factors, and aberrant immune response. Peptidoglycan Recognition Proteins (Pglyrps) are expressed in the skin and we report here that they modulate sensitivity to experimentally-induced atopic dermatitis and contact dermatitis. Pglyrp3−/− and Pglyrp4−/− mice (but not Pglyrp2−/− mice) develop more severe oxazolone-induced atopic dermatitis than wild type (WT) mice. The common mechanism underlying this increased sensitivity of Pglyrp3−/− and Pglyrp4−/− mice to atopic dermatitis is reduced recruitment of Treg cells to the skin and enhanced production and activation Th17 cells in Pglyrp3−/− and Pglyrp4−/− mice, which results in more severe inflammation and keratinocyte proliferation. This mechanism is supported by decreased inflammation in Pglyrp3−/− mice following in vivo induction of Treg cells by vitamin D or after neutralization of IL-17. By contrast, Pglyrp1−/− mice develop less severe oxazolone-induced atopic dermatitis and also oxazolone-induced contact dermatitis than WT mice. Thus, Pglyrp3 and Pglyrp4 limit over-activation of Th17 cells by promoting accumulation of Treg cells at the site of chronic inflammation, which protects the skin from exaggerated inflammatory response to cell activators and allergens, whereas Pglyrp1 has an opposite pro-inflammatory effect in the skin

    Computational analyses of eukaryotic promoters

    Get PDF
    Computational analysis of eukaryotic promoters is one of the most difficult problems in computational genomics and is essential for understanding gene expression profiles and reverse-engineering gene regulation network circuits. Here I give a basic introduction of the problem and recent update on both experimental and computational approaches. More details may be found in the extended references. This review is based on a summer lecture given at Max Planck Institute at Berlin in 2005

    Recovering Dietary Information from Extant and Extinct Primates Using Plant Microremains

    Get PDF
    When reconstructing the diets of primates, researchers often rely on several well established methods, such as direct observation, studies of discarded plant parts, and analysis of macrobotanical remains in fecal matter. Most of these studies can be performed only on living primate groups, however, and the diets of extinct, subfossil, and fossil groups are known only from proxy methods. Plant microremains, tiny plant structures with distinctive morphologies, can record the exact plant foods that an individual consumed. They can be recovered from recently deceased and fossil primate samples, and can also be used to supplement traditional dietary analyses in living groups. Here I briefly introduce plant microremains, provide examples of how they have been successfully used to reconstruct the diets of humans and other species, and describe methods for their application in studies of primate dietary ecology
    corecore