56 research outputs found
Effects of Microwave Heating on Sensory Characteristics of Kiwifruit Puree
The effect of microwave processing on the characteristics of kiwifruit puree was evaluated by applying various gentle treatments. Different combinations of microwave power/processing time were applied, with power among 200-1,000 W and time among 60-340 s, and various sensory and instrumental measurements were performed with the aim of establishing correlations and determining which instrumental parameters were the most appropriate to control the quality of kiwi puree. The water and soluble solids of the product, 83 and 14/100 g sample, respectively, did not change due to treatments. For sensory assessment, an expert panel was previously trained to describe the product. Fourteen descriptors were defined, but only the descriptors 'typical kiwifruit colour', 'tone', 'lightness', 'visual consistency' and 'typical taste' were significant to distinguish between kiwifruit puree samples. The instrumental analysis of samples consisted in measuring consistency, viscosity, colour and physicochemical characteristics of the treated and fresh puree. Applying intense treatments (600 W-340 s, 900 W-300 s and 1,000 W-200 s) through high power or long treatment periods or a combination of these factors, mainly affects the consistency (flow distance decreased from 5. 9 to 3. 4 mm/g sample), viscosity (increased from 1. 6 to 2. 5 Pa/s), colour (maximun ¿E was 6 U) and taste of the product. As a result, samples were thicker and with an atypical flavour and kiwifruit colour due to increased clarity (L* increased from 38 to 43) and slight changes in the yellow-green hue (h* decreased from 95 to 94). For the instrumental determinations of colour and visual perception of consistency, the most suitable parameters for quality control are the colour coordinates L*, a*, h*, whiteness index and flow distance measured with a Bostwick consistometer. © 2011 Springer Science+Business Media, LLC.The authors thank the Ministerio de Educacion y Ciencia for the financial support given throughout the Project AGL 2010-22176. The authors are indebted to the Generalitat Valenciana (Valencia, Spain) for the Grant awarded to the author Maria Benlloch. The translation of this paper was funded by the Universidad Politecnica de Valencia, Spain.Benlloch Tinoco, M.; Varela Tomasco, PA.; Salvador Alcaraz, A.; Martínez Navarrete, N. (2012). Effects of Microwave Heating on Sensory Characteristics of Kiwifruit Puree. Food and Bioprocess Technology. 5(8):3021-3031. https://doi.org/10.1007/s11947-011-0652-1S3021303158Albert, A., Varela, P., Salvador, A., & Fiszman, S. M. (2009). Improvement of crunchiness of battered fish nuggets. European Food Research and Technology, 228, 923–930.Alegria, P., Pinheiro, J., Gonçalves, E. M., Fernandes, I., Moldao, M., & Abreu, M. (2010). Evaluation of a pre-cut heat treatment as an alternative to chlorine in minimally processed shredded carrot. Innovative Food Science and Emerging Technologies, 11, 155–161.AOAC. (2000). Official Methods of Analysis of AOAC International. Gaithersburg: AOAC.Barboni, T., Cannac, M., & Chiaramonti, N. (2010). Effect of cold storage and ozone treatment on physicochemical parameters, soluble sugars and organic acids in Actinidia deliciosa. Food Chemistry, 121, 946–951.Beirão-da-Costa, S., Steiner, A., Correia, L., Empis, J., & Moldão-Martins, M. (2006). Effects of maturity stage and mild heat treatments on quality of minimally processed kiwifruitfruit. Journal of Food Engineering, 76, 616–625.Bodart, M., de Peñaranda, R., Deneyer, A., & Flamant, G. (2008). Photometry and colorimetry characterisation of materials in daylighting evaluation tools. Building and Environment, 43, 2046–2058.Bourne, M. C. (1982). Food texture and viscosity-concept and measurement. New York: Academic.Cano, M. P., Hernández, A., & de Ancos, B. (1997). High pressure and temperature effects on enzyme inactivation in strawberry and orange products. Journal of Food Science, 62(1), 85–88.Chiralt, A., Martínez-Navarrete, N., Camacho, M. M., & González, C. (1998). Experimentos de fisicoquímica de alimentos. Valencia: Editorial Universidad Politécnica de Valencia (Chapter 3).Chiralt, A., Martínez-Navarrete, N., González, C., Talens, P., & Moraga, G. (2007). Propiedades físicas de los alimentos. Valencia: Editorial Universidad Politécnica de Valencia (Chapter 16).Contreras, C., Martín, M. E., Martínez-Navarrete, N., & Chiralt, A. (2005). Effect of vacuum impregnation and microwave application on structural changes occurred during air drying of apple. Food Science and Technology/LWT, 38(5), 471–477.Contreras, C., Martín-Esparza, M. E., Martínez-Navarrete, N., & Chiralt, A. (2007). Influence of osmotic pre-treatment and microwave application on properties of air dried strawberry related to structural changes. European Food Research and Technology, 224, 499–504.de Ancos, B., Cano, M. P., Hernández, A., & Monreal, M. (1999). Effects of microwave heating on pigment composition and color of fruit purees. Journal of the Science of Food and Agriculture, 79, 663–670.Dubost, N. J., Shewfelt, R. L., & Eitenmiller, R. R. (2003). Consumer acceptability, sensory and instrumental analysis of peanut soy spreads. Journal of Food Quality, 26, 27–42.Escribano, S., Sánchez, F. J., & Lázaro, A. (2010). Establishment of a sensory characterization protocol for melon (Cucumis melo L.) and its correlation with physical-chemical attributes: indications for future genetics improvements. European Food Research and Technology, 231, 611–621.Fang, L., Jiang, B., & Zhang, T. (2008). Effect of combined high pressure and thermal treatment in kiwifruit peroxidase. Food Chemistry, 109, 802–807.Fisk, C. L., McDaniel, M. R., Strick, B. C., & Zhao, Y. (2006). Physicochemical, sensory, and nutritive qualities of hardy kiwifruit (Actinidia arguta ‘Ananasnaya’) as affected by harvest maturity and storage. Sensory and Nutritive Qualities of Food, 71(3), 204–210.Fúster, C., Préstamo, G., & Cano, M. P. (1994). Drip loss, peroxidase and sensory changes in kiwi fruit slices during frozen storage. Journal of the Science of Food and Agriculture, 64, 23–29.Guldas, M. (2003). Peeling and the physical and chemical properties of kiwi fruit. Journal of Food Processing Preservation, 27, 271–284.Igual, M., Contreras, C., & Martínez-Navarrete, N. (2010). Non-conventional techniques to obtain grapefruit jam. Innovative Food Science and Emerging Technologies, 11, 335–341.Igual, M., García-Martínez, E., Camacho, M. M., & Martínez-Navarrete, N. (2010). Effect of thermal treatment and storage on the stability of organic acids and the functional value of grapefruit juice. Food Chemistry, 118, 291–299.Jaeger, S. R., Rossiter, K. L., Wismer, W. V., & Harker, F. R. (2003). Consumer-driven product development in the kiwifruit industry. Food Quality and Preference, 14, 187–198.Lawless, H., & Heymann, H. (1998). Sensory evaluation of food: Principles and practices. New York: Chapman & Hall.MAPA (2010). Plataforma de conocimiento para el medio rural y pesquero. National Agricultural Statistics Database, Spain, Available at: www.mapa.es . Accessed 05 October 2010.Maskan, M. (2001). Kinetics of colour change of kiwifruits during hot air and microwave drying. Journal of Food Engineering, 48, 169–175.Mohammadi, A., Rafiee, S., Emam-Djomeh, Z., & Keyhani, A. (2008). Kinetic models for colour change in kiwifruit slices during Hoy Air drying. World Journal of Agricultural Sciences, 4(3), 376–383.Moretti, C. L., Mattos, L. M., Machado, C. M. M., & Kluge, R. A. (2007). Physiological and quality attributes associated with different centrifugation times of baby carrots. Horticultura Brasileira, 25, 557–561.Nielsen, S. S. (2010). Food analysis laboratory manual. New York: Springer.Oraguzie, N., Alspach, P., Volz, R., Whitworz, C., Ranatunga, C., Weskett, R., et al. (2009). Postharvest assessment of fruit quality parameters in apple using both instrument and an expert panel. Posthaverst Biology and Technology., 52, 279–287.Pagliarini, E., Laureati, M., & Lavelli, V. (2010). Sensory evaluation of gluten-free breads assessed by a trained panel of celiac assessors. European Food Research and Technology, 231, 37–46.Park, E. Y., & Luh, B. S. (1985). Polyphenol oxidase of kiwifruit. Journal of Food Science, 50, 678–684.Schubert, H., & Regier, M. (2010). The microwave processing of foods. London: Woodhead.Segnini, S., Dejmek, P., & Öste, R. (1999). Relationship between instrumental and sensory analysis of texture and colour of potato chips. Journal of Texture Studies, 30, 677–690.Sinija, V. R., & Mishra, H. N. (2011). Fuzzy analysis of sensory data for quality evaluation and ranking of instant green Tea powder and granules. Food Bioprocess Technology, 4, 408–416.Soufleros, E. H., Pissa, I., Petridis, D., Lygerakis, M., Mermelas, K., Boukouvalas, G., et al. (2001). Instrumental analysis of volatile and other compounds of Greek kiwi wine; sensory evaluation and optimization of its composition. Analytical, Nutritional and Clinical Methods Section, 75, 487–500.Vadivambal, R., & Jayas, D. S. (2007). Changes in quality of microwave-treated agricultural products-a review. Biosystems Engineering, 98, 1–16.Worch, T., Lê, S., & Punter, P. (2010). How reliable are the consumers? Comparison of sensory profiles from consumers and experts. Food Quality and Preference, 21, 309–318.Zanoni, B., Lavelli, V., Ambrosoli, R., Garavaglia, L., Minati, J., & Pagliarini, E. (2007). A model to predict shelf-life in air and darkness of cut, ready-to-use, fresh carrots under both isothermal and non-isothermal conditions. Journal of Food Engineering, 79, 586–591.Zolfaghari, M., Sahari, M. A., Barzegar, M., & Samadloiy, H. (2010). Physicochemical and enzymatic properties of five kiwifruit cultivars during cold storage. Food Bioprocess Technology, 3, 239–246
Discerning natural and anthropogenic organic matter inputs to salt marsh sediments of Ria Formosa lagoon (South Portugal)
Sedimentary organic matter (OM) origin and molecular composition provide useful information to understand carbon cycling in coastal wetlands. Core sediments from threors' Contributionse transects along Ria Formosa lagoon intertidal zone were analysed using analytical pyrolysis (Py-GC/MS) to determine composition, distribution and origin of sedimentary OM. The distribution of alkyl compounds (alkanes, alkanoic acids and alkan-2-ones), polycyclic aromatic hydrocarbons (PAHs), lignin-derived methoxyphenols, linear alkylbenzenes (LABs), steranes and hopanes indicated OM inputs to the intertidal environment from natural-autochthonous and allochthonous-as well as anthropogenic. Several n-alkane geochemical indices used to assess the distribution of main OM sources (terrestrial and marine) in the sediments indicate that algal and aquatic macrophyte derived OM inputs dominated over terrigenous plant sources. The lignin-derived methoxyphenol assemblage, dominated by vinylguaiacol and vinylsyringol derivatives in all sediments, points to large OM contribution from higher plants. The spatial distributions of PAHs (polyaromatic hydrocarbons) showed that most pollution sources were mixed sources including both pyrogenic and petrogenic. Low carbon preference indexes (CPI > 1) for n-alkanes, the presence of UCM (unresolved complex mixture) and the distribution of hopanes (C-29-C-36) and steranes (C-27-C-29) suggested localized petroleum-derived hydrocarbon inputs to the core sediments. Series of LABs were found in most sediment samples also pointing to domestic sewage anthropogenic contributions to the sediment OM.EU Erasmus Mundus Joint Doctorate fellowship (FUECA, University of Cadiz, Spain)EUEuropean Commission [FP7-ENV-2011, 282845, FP7-534 ENV-2012, 308392]MINECO project INTERCARBON [CGL2016-78937-R]info:eu-repo/semantics/publishedVersio
Global patterns in monthly activity of influenza virus, respiratory syncytial virus, parainfluenza virus, and metapneumovirus: a systematic analysis
Background Influenza virus, respiratory syncytial virus, parainfluenza virus, and metapneumovirus are the most common viruses associated with acute lower respiratory infections in young children (= 65 years). A global report of the monthly activity of these viruses is needed to inform public health strategies and programmes for their control.Methods In this systematic analysis, we compiled data from a systematic literature review of studies published between Jan 1, 2000, and Dec 31, 2017; online datasets; and unpublished research data. Studies were eligible for inclusion if they reported laboratory-confirmed incidence data of human infection of influenza virus, respiratory syncytial virus, parainfluenza virus, or metapneumovirus, or a combination of these, for at least 12 consecutive months (or 52 weeks equivalent); stable testing practice throughout all years reported; virus results among residents in well-defined geographical locations; and aggregated virus results at least on a monthly basis. Data were extracted through a three-stage process, from which we calculated monthly annual average percentage (AAP) as the relative strength of virus activity. We defined duration of epidemics as the minimum number of months to account for 75% of annual positive samples, with each component month defined as an epidemic month. Furthermore, we modelled monthly AAP of influenza virus and respiratory syncytial virus using site-specific temperature and relative humidity for the prediction of local average epidemic months. We also predicted global epidemic months of influenza virus and respiratory syncytial virus on a 5 degrees by 5 degrees grid. The systematic review in this study is registered with PROSPERO, number CRD42018091628.Findings We initally identified 37 335 eligible studies. Of 21 065 studies remaining after exclusion of duplicates, 1081 full-text articles were assessed for eligibility, of which 185 were identified as eligible. We included 246 sites for influenza virus, 183 sites for respiratory syncytial virus, 83 sites for parainfluenza virus, and 65 sites for metapneumovirus. Influenza virus had clear seasonal epidemics in winter months in most temperate sites but timing of epidemics was more variable and less seasonal with decreasing distance from the equator. Unlike influenza virus, respiratory syncytial virus had clear seasonal epidemics in both temperate and tropical regions, starting in late summer months in the tropics of each hemisphere, reaching most temperate sites in winter months. In most temperate sites, influenza virus epidemics occurred later than respiratory syncytial virus (by 0.3 months [95% CI -0.3 to 0.9]) while no clear temporal order was observed in the tropics. Parainfluenza virus epidemics were found mostly in spring and early summer months in each hemisphere. Metapneumovirus epidemics occurred in late winter and spring in most temperate sites but the timing of epidemics was more diverse in the tropics. Influenza virus epidemics had shorter duration (3.8 months [3.6 to 4.0]) in temperate sites and longer duration (5.2 months [4.9 to 5.5]) in the tropics. Duration of epidemics was similar across all sites for respiratory syncytial virus (4.6 months [4.3 to 4.8]), as it was for metapneumovirus (4.8 months [4.4 to 5.1]). By comparison, parainfluenza virus had longer duration of epidemics (6.3 months [6.0 to 6.7]). Our model had good predictability in the average epidemic months of influenza virus in temperate regions and respiratory syncytial virus in both temperate and tropical regions. Through leave-one-out cross validation, the overall prediction error in the onset of epidemics was within 1 month (influenza virus -0.2 months [-0.6 to 0.1]; respiratory syncytial virus 0.1 months [-0.2 to 0.4]).Interpretation This study is the first to provide global representations of month-by-month activity of influenza virus, respiratory syncytial virus, parainfluenza virus, and metapneumovirus. Our model is helpful in predicting the local onset month of influenza virus and respiratory syncytial virus epidemics. The seasonality information has important implications for health services planning, the timing of respiratory syncytial virus passive prophylaxis, and the strategy of influenza virus and future respiratory syncytial virus vaccination. Copyright (C) 2019 The Author(s). Published by Elsevier Ltd
Single-dose administration and the influence of the timing of the booster dose on immunogenicity and efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine: a pooled analysis of four randomised trials.
BACKGROUND: The ChAdOx1 nCoV-19 (AZD1222) vaccine has been approved for emergency use by the UK regulatory authority, Medicines and Healthcare products Regulatory Agency, with a regimen of two standard doses given with an interval of 4-12 weeks. The planned roll-out in the UK will involve vaccinating people in high-risk categories with their first dose immediately, and delivering the second dose 12 weeks later. Here, we provide both a further prespecified pooled analysis of trials of ChAdOx1 nCoV-19 and exploratory analyses of the impact on immunogenicity and efficacy of extending the interval between priming and booster doses. In addition, we show the immunogenicity and protection afforded by the first dose, before a booster dose has been offered. METHODS: We present data from three single-blind randomised controlled trials-one phase 1/2 study in the UK (COV001), one phase 2/3 study in the UK (COV002), and a phase 3 study in Brazil (COV003)-and one double-blind phase 1/2 study in South Africa (COV005). As previously described, individuals 18 years and older were randomly assigned 1:1 to receive two standard doses of ChAdOx1 nCoV-19 (5 × 1010 viral particles) or a control vaccine or saline placebo. In the UK trial, a subset of participants received a lower dose (2·2 × 1010 viral particles) of the ChAdOx1 nCoV-19 for the first dose. The primary outcome was virologically confirmed symptomatic COVID-19 disease, defined as a nucleic acid amplification test (NAAT)-positive swab combined with at least one qualifying symptom (fever ≥37·8°C, cough, shortness of breath, or anosmia or ageusia) more than 14 days after the second dose. Secondary efficacy analyses included cases occuring at least 22 days after the first dose. Antibody responses measured by immunoassay and by pseudovirus neutralisation were exploratory outcomes. All cases of COVID-19 with a NAAT-positive swab were adjudicated for inclusion in the analysis by a masked independent endpoint review committee. The primary analysis included all participants who were SARS-CoV-2 N protein seronegative at baseline, had had at least 14 days of follow-up after the second dose, and had no evidence of previous SARS-CoV-2 infection from NAAT swabs. Safety was assessed in all participants who received at least one dose. The four trials are registered at ISRCTN89951424 (COV003) and ClinicalTrials.gov, NCT04324606 (COV001), NCT04400838 (COV002), and NCT04444674 (COV005). FINDINGS: Between April 23 and Dec 6, 2020, 24 422 participants were recruited and vaccinated across the four studies, of whom 17 178 were included in the primary analysis (8597 receiving ChAdOx1 nCoV-19 and 8581 receiving control vaccine). The data cutoff for these analyses was Dec 7, 2020. 332 NAAT-positive infections met the primary endpoint of symptomatic infection more than 14 days after the second dose. Overall vaccine efficacy more than 14 days after the second dose was 66·7% (95% CI 57·4-74·0), with 84 (1·0%) cases in the 8597 participants in the ChAdOx1 nCoV-19 group and 248 (2·9%) in the 8581 participants in the control group. There were no hospital admissions for COVID-19 in the ChAdOx1 nCoV-19 group after the initial 21-day exclusion period, and 15 in the control group. 108 (0·9%) of 12 282 participants in the ChAdOx1 nCoV-19 group and 127 (1·1%) of 11 962 participants in the control group had serious adverse events. There were seven deaths considered unrelated to vaccination (two in the ChAdOx1 nCov-19 group and five in the control group), including one COVID-19-related death in one participant in the control group. Exploratory analyses showed that vaccine efficacy after a single standard dose of vaccine from day 22 to day 90 after vaccination was 76·0% (59·3-85·9). Our modelling analysis indicated that protection did not wane during this initial 3-month period. Similarly, antibody levels were maintained during this period with minimal waning by day 90 (geometric mean ratio [GMR] 0·66 [95% CI 0·59-0·74]). In the participants who received two standard doses, after the second dose, efficacy was higher in those with a longer prime-boost interval (vaccine efficacy 81·3% [95% CI 60·3-91·2] at ≥12 weeks) than in those with a short interval (vaccine efficacy 55·1% [33·0-69·9] at <6 weeks). These observations are supported by immunogenicity data that showed binding antibody responses more than two-fold higher after an interval of 12 or more weeks compared with an interval of less than 6 weeks in those who were aged 18-55 years (GMR 2·32 [2·01-2·68]). INTERPRETATION: The results of this primary analysis of two doses of ChAdOx1 nCoV-19 were consistent with those seen in the interim analysis of the trials and confirm that the vaccine is efficacious, with results varying by dose interval in exploratory analyses. A 3-month dose interval might have advantages over a programme with a short dose interval for roll-out of a pandemic vaccine to protect the largest number of individuals in the population as early as possible when supplies are scarce, while also improving protection after receiving a second dose. FUNDING: UK Research and Innovation, National Institutes of Health Research (NIHR), The Coalition for Epidemic Preparedness Innovations, the Bill & Melinda Gates Foundation, the Lemann Foundation, Rede D'Or, the Brava and Telles Foundation, NIHR Oxford Biomedical Research Centre, Thames Valley and South Midland's NIHR Clinical Research Network, and AstraZeneca
Evaluation of appendicitis risk prediction models in adults with suspected appendicitis
Background
Appendicitis is the most common general surgical emergency worldwide, but its diagnosis remains challenging. The aim of this study was to determine whether existing risk prediction models can reliably identify patients presenting to hospital in the UK with acute right iliac fossa (RIF) pain who are at low risk of appendicitis.
Methods
A systematic search was completed to identify all existing appendicitis risk prediction models. Models were validated using UK data from an international prospective cohort study that captured consecutive patients aged 16–45 years presenting to hospital with acute RIF in March to June 2017. The main outcome was best achievable model specificity (proportion of patients who did not have appendicitis correctly classified as low risk) whilst maintaining a failure rate below 5 per cent (proportion of patients identified as low risk who actually had appendicitis).
Results
Some 5345 patients across 154 UK hospitals were identified, of which two‐thirds (3613 of 5345, 67·6 per cent) were women. Women were more than twice as likely to undergo surgery with removal of a histologically normal appendix (272 of 964, 28·2 per cent) than men (120 of 993, 12·1 per cent) (relative risk 2·33, 95 per cent c.i. 1·92 to 2·84; P < 0·001). Of 15 validated risk prediction models, the Adult Appendicitis Score performed best (cut‐off score 8 or less, specificity 63·1 per cent, failure rate 3·7 per cent). The Appendicitis Inflammatory Response Score performed best for men (cut‐off score 2 or less, specificity 24·7 per cent, failure rate 2·4 per cent).
Conclusion
Women in the UK had a disproportionate risk of admission without surgical intervention and had high rates of normal appendicectomy. Risk prediction models to support shared decision‐making by identifying adults in the UK at low risk of appendicitis were identified
- …