299 research outputs found
In vitro study of antiamoebic activity of methanol extract of fruit of Pimpinella anisum on trophozoites of Entamoeba histolytica HM1-IMSS
The aniseed plant Pimpinella anisum (Saunf-Hindi) is one of the most ancient medicinal plants used by man. Currently, this plant has several uses in the food industry as spice, whereas in the pharmacopoeia, it is used as an expectorant in digestive disturbances, as mild diuretic, and as insect repellent in external use. In this paper, we evaluated the biological activity of methanolic extract of P. anisum on in vitro growth of Entamoeba histolytica HM1-IMSS under axenic conditions. We observed that the growth inhibition of E. histolytica was at CI50 = 0.034 μg/mL. Results confirm the antiamoebic activity of the methanolic extract of P. anisum.Keywords: Pimpinella anisum, Entamoeba histolytica, antiamoebic activity, medicinal plantsAfrican Journal of Biotechnology Vol. 12(16), pp. 2065-206
Antiretroviral therapy partially improves the abnormalities of dendritic cells and lymphoid and myeloid regulatory populations in recently infected HIV patients
This study aimed to evaluate the effects of antiretroviral therapy on plasmacytoid (pDC) and myeloid
(mDC) dendritic cells as well as regulatory T (Treg) and myeloid-derived suppressor (MDSC) cells in HIVinfected
patients. Forty-five HIV-infected patients (20 of them with detectable HIV load −10 recently
infected and 10 chronically infected patients-, at baseline and after antiretroviral therapy, and 25 with
undetectable viral loads) and 20 healthy controls were studied. The influence of HIV load, bacterial
translocation (measured by 16S rDNA and lipopolysaccharide-binding protein) and immune activation
markers (interleukin –IL- 6, soluble CD14, activated T cells) was analyzed. The absolute numbers and
percentages of pDC and mDC were significantly increased in patients. Patients with detectable viral
load exhibited increased intracellular expression of IL-12 by mDCs and interferon -IFN- α by pDCs.
Activated population markers were elevated, and the proportion of Tregs was significantly higher in
HIV-infected patients. The MDSC percentage was similar in patients and controls, but the intracellular
expression of IL-10 was significantly higher in patients. The achievement of undetectable HIV load
after therapy did not modify bacterial translocation parameters, but induce an increase in pDCs, mDCs
and MDSCs only in recently infected patients. Our data support the importance of early antiretroviral
therapy to preserve dendritic and regulatory cell function in HIV-infected individuals
Temporal controls on silicic acid utilisation along the West Antarctic Peninsula
The impact of climatic change along the Antarctica Peninsula has been widely debated in light of atmospheric/oceanic warming and increases in glacial melt over the past half century. Particular concern exists over the impact of these changes on marine ecosystems, not only on primary producers but also on higher trophic levels. Here we present a record detailing the historical controls on the biogeochemical cycling of silicic acid [Si(OH)4] on the west Antarctica Peninsula margin, a region in which the modern phytoplankton environment is constrained by seasonal sea-ice. We demonstrate that Si(OH)4 cycling through the Holocene alternates between being primarily regulated by sea-ice or glacial discharge from the surrounding grounded ice-sheet. With further climate-driven change and melting forecast for the 21st Century, our findings document the potential for biogeochemical cycling and multi-trophic interactions along the peninsula to be increasingly regulated by glacial discharge, altering food-web interactions
Treatment of bone tumours by radiofrequency thermal ablation
Radiofrequency thermal ablation (RFTA) is considered the treatment of choice for osteoid osteomas, in which it has long been safely used. Other benign conditions (chondroblastoma, osteoblastoma, giant cell tumour, etc.) can also be treated by this technique, which is less invasive than traditional surgical procedures. RFTA ablation is also an option for the palliation of localized, painful osteolytic metastatic and myeloma lesions. The reduction in pain improves the quality of life of patients with cancer, who often have multiple morbidities and a limited life expectancy. In some cases, these patients are treated with RFTA because conventional therapies (surgery, radiotherapy, chemotherapy, etc.) have been exhausted. In other cases, it is combined with conventional therapies or other percutaneous treatments, e.g., cementoplasty, offering faster pain relief and bone strengthening. A multidisciplinary approach to the management of these patients is recommended to select the optimal treatment, including orthopaedic surgeons, neurosurgeons, medical and radiation oncologists and interventional radiologists
Response Prediction in Chronic Hepatitis C by Assessment of IP-10 and IL28B-Related Single Nucleotide Polymorphisms
Background: High baseline levels of IP-10 predict a slower first phase decline in HCV RNA and a poor outcome following interferon/ribavirin therapy in patients with chronic hepatitis C. Several recent studies report that single nucleotide polymorphisms (SNPs) adjacent to IL28B predict spontaneous resolution of HCV infection and outcome of treatment among HCV genotype 1 infected patients. Methods and Findings: In the present study, we correlated the occurrence of variants at three such SNPs (rs12979860, rs12980275, and rs8099917) with pretreatment plasma IP-10 and HCV RNA throughout therapy within a phase III treatment trial (HCV-DITTO) involving 253 Caucasian patients. The favorable SNP variants (CC, AA, and TT, respectively) were associated with lower baseline IP-10 (P = 0.02, P = 0.01, P = 0.04) and were less common among HCV genotype 1 infected patients than genotype 2/3 (P<0.0001, P<0.0001, and P = 0.01). Patients carrying favorable SNP genotypes had higher baseline viral load than those carrying unfavorable variants (P = 0.0013, P = 0.029, P = 0.0004 respectively). Among HCV genotype 1 infected carriers of the favorable C, A, or T alleles, IP-10 below 150 pg/mL significantly predicted a more pronounced reduction of HCV RNA from day 0 to 4 (first phase decline), which translated into increased rates of RVR (62%, 53%, and 39%) and SVR (85%, 76%, and 75% respectively) among homozygous carriers with baseline IP-10 below 150 pg/mL. In multivariate analyses of genotype 1-infected patients, baseline IP-10 and C genotype at rs12979860 independently predicted the first phase viral decline and RVR, which in turn independently predicted SVR. Conclusions: Concomitant assessment of pretreatment IP-10 and IL28B-related SNPs augments the prediction of the first phase decline in HCV RNA, RVR, and final therapeutic outcome
The comparative osmoregulatory ability of two water beetle genera whose species span the fresh-hypersaline gradient in inland waters (Coleoptera: Dytiscidae, Hydrophilidae).
A better knowledge of the physiological basis of salinity tolerance is essential to understanding the ecology and evolutionary history of organisms that have colonized inland saline waters. Coleoptera are amongst the most diverse macroinvertebrates in inland waters, including saline habitats; however, the osmoregulatory strategies they employ to deal with osmotic stress remain unexplored. Survival and haemolymph osmotic concentration at different salinities were examined in adults of eight aquatic beetle species which inhabit different parts of the fresh-hypersaline gradient. Studied species belong to two unrelated genera which have invaded saline waters independently from freshwater ancestors; Nebrioporus (Dytiscidae) and Enochrus (Hydrophilidae). Their osmoregulatory strategy (osmoconformity or osmoregulation) was identified and osmotic capacity (the osmotic gradient between the animal's haemolymph and the external medium) was compared between species pairs co-habiting similar salinities in nature. We show that osmoregulatory capacity, rather than osmoconformity, has evolved independently in these different lineages. All species hyperegulated their haemolymph osmotic concentration in diluted waters; those living in fresh or low-salinity waters were unable to hyporegulate and survive in hyperosmotic media (> 340 mosmol kg(-1)). In contrast, the species which inhabit the hypo-hypersaline habitats were effective hyporegulators, maintaining their haemolymph osmolality within narrow limits (ca. 300 mosmol kg(-1)) across a wide range of external concentrations. The hypersaline species N. ceresyi and E. jesusarribasi tolerated conductivities up to 140 and 180 mS cm(-1), respectively, and maintained osmotic gradients over 3500 mosmol kg(-1), comparable to those of the most effective insect osmoregulators known to date. Syntopic species of both genera showed similar osmotic capacities and in general, osmotic responses correlated well with upper salinity levels occupied by individual species in nature. Therefore, osmoregulatory capacity may mediate habitat segregation amongst congeners across the salinity gradient
Unraveling the effect of silent, intronic and missense mutations on VWF splicing: contribution of next generation sequencing in the study of mRNA
Large studies in von Willebrand disease patients, including Spanish and Portuguese registries, led to identification of >250 different mutations. It is a challenge to determine the pathogenic effect of potential splice site mutations on VWF mRNA. This study aimed to elucidate the true effects of 18 mutations on VWF mRNA processing, investigate the contribution of next-generation sequencing to in vivo mRNA study in von Willebrand disease, and compare the findings with in silico prediction. RNA extracted from patient platelets and leukocytes was amplified by RT-PCR and sequenced using Sanger and next generation sequencing techniques. Eight mutations affected VWF splicing: c.1533+1G>A, c.5664+2T>C and c.546G>A (p.=) prompted exon skipping; c.3223-7_3236dup and c.7082-2A>G resulted in activation of cryptic sites; c.3379+1G>A and c.7473G>A (p.=) demonstrated both molecular pathogenic mechanisms simultaneously; and the p.Cys370Tyr missense mutation generated two aberrant transcripts. Of note, the complete effect of 3 mutations was provided by next generation sequencing alone because of low expression of the aberrant transcripts. In the remaining 10 mutations, no effect was elucidated in the experiments. However, the differential findings obtained in platelets and leukocytes provided substantial evidence that 4 of these would have an effect on VWF levels. In this first report using next generation sequencing technology to unravel the effects of VWF mutations on splicing, the technique yielded valuable information. Our data bring to light the importance of studying the effect of synonymous and missense mutations on VWF splicing to improve the current knowledge of the molecular mechanisms behind von Willebrand disease.info:eu-repo/semantics/publishedVersio
Unraveling the effect of silent, intronic and missense mutations on VWF splicing: contribution of next generation sequencing in the study of mRNA
Large studies in von Willebrand disease patients, including Spanish and Portuguese registries, led to the identification of >250 different mutations. It is a challenge to determine the pathogenic effect of potential splice site mutations on VWF mRNA. This study aimed to elucidate the true effects of 18 mutations on VWF mRNA processing, investigate the contribution of next-generation sequencing to in vivo mRNA study in von Willebrand disease, and compare the findings with in silico prediction. RNA extracted from patient platelets and leukocytes was amplified by RT-PCR and sequenced using Sanger and next generation sequencing techniques. Eight mutations affected VWF splicing: c.1533+1G>A, c.5664+2T>C and c.546G>A (p.=) prompted exon skipping; c.3223-7_3236dup and c.7082-2A>G resulted in activation of cryptic sites; c.3379+1G>A and c.7437G>A) demonstrated both molecular pathogenic mechanisms simultaneously; and the p.Cys370Tyr missense mutation generated two aberrant transcripts. Of note, the complete effect of three mutations was provided by next generation sequencing alone because of low expression of the aberrant transcripts. In the remaining 10 mutations, no effect was elucidated in the experiments. However, the differential findings obtained in platelets and leukocytes provided substantial evidence that four of these would have an effect on VWF levels. In this first report using next generation sequencing technology to unravel the effects of VWF mutations on splicing, the technique yielded valuable information. Our data bring to light the importance of studying the effect of synonymous and missense mutations on VWF splicing to improve the current knowledge of the molecular mechanisms behind von Willebrand disease. clinicaltrials.gov identifier:02869074
First Human Model of In Vitro Candida albicans Persistence within Granuloma for the Reliable Study of Host-Fungi Interactions
BACKGROUND: The balance between human innate immune system and Candida albicans virulence signaling mechanisms ultimately dictates the outcome of fungal invasiveness and its pathology. To better understand the pathophysiology and to identify fungal virulence-associated factors in the context of persistence in humans, complex models are indispensable. Although fungal virulence factors have been extensively studied in vitro and in vivo using different immune cell subsets and cell lines, it is unclear how C. albicans survives inside complex tissue granulomas. METHODOLOGY/PRINCIPAL FINDING: We developed an original model of in vitro human granuloma, reproducing the natural granulomatous response to C. albicans. Persistent granulomas were obtained when the ratio of phagocytes to fungi was high. This in vitro fungal granuloma mimics natural granulomas, with infected macrophages surrounded by helper and cytotoxic T lymphocytes. A small proportion of granulomas exhibited C. albicans hyphae. Histological and time-lapse analysis showed that C. albicans blastoconidia were located within the granulomas before hyphae formation. Using staining techniques, fungal load calculations, as well as confocal and scanning electron microscopy, we describe the kinetics of fungal granuloma formation. We provide the first direct evidence that C. albicans are not eliminated by immunocompetent cells inside in vitro human granulomas. In fact, after an initial candicidal period, the remaining yeast proliferate and persist under very complex immune responses. CONCLUSIONS/SIGNIFICANCE: Using an original in vitro model of human fungal granuloma, we herein present the evidence that C. albicans persist and grow into immunocompetent granulomatous structures. These results will guide us towards a better understanding of fungal invasiveness and, henceforth, will also help in the development of better strategies for its control in human physiological conditions
- …