371 research outputs found

    In vivo precision of the GE Lunar iDXA for the measurement of visceral adipose tissue in adults: the influence of body mass index.

    Get PDF
    CoreScan is a new software for the GE Lunar iDXA, which provides a quantification of visceral adipose tissue (VAT). The objective of this study was to determine the in vivo precision of CoreScan for the measurement of VAT mass in a heterogeneous group of adults. Forty-five adults (aged 34.6 (8.6) years), ranging widely in body mass index (BMI 26.0 (5.2)  kg/m(2); 16.7-42.4 kg/m(2)), received two consecutive total body scans with repositioning. The sample was divided into two subgroups based on BMI, normal-weight and overweight/obese, for precision analyses. Subgroup analyses revealed that precision errors (RMSSD:%CV; root mean square standard deviation:% coefficient of variation) for VAT mass were 20.9 g:17.0% in the normal-weight group and 43.7 g:5.4% in overweight/obese groups. Our findings indicate that precision for DXA-VAT mass measurements increases with BMI, but caution should be used with %CV-derived precision error in normal BMI subjects.European Journal of Clinical Nutrition advance online publication, 15 October 2014; doi:10.1038/ejcn.2014.213

    Modulation of emotional appraisal by false physiological feedback during fMRI

    Get PDF
    BACKGROUND James and Lange proposed that emotions are the perception of physiological reactions. Two-level theories of emotion extend this model to suggest that cognitive interpretations of physiological changes shape self-reported emotions. Correspondingly false physiological feedback of evoked or tonic bodily responses can alter emotional attributions. Moreover, anxiety states are proposed to arise from detection of mismatch between actual and anticipated states of physiological arousal. However, the neural underpinnings of these phenomena previously have not been examined. METHODOLOGY/PRINCIPAL FINDINGS We undertook a functional brain imaging (fMRI) experiment to investigate how both primary and second-order levels of physiological (viscerosensory) representation impact on the processing of external emotional cues. 12 participants were scanned while judging face stimuli during both exercise and non-exercise conditions in the context of true and false auditory feedback of tonic heart rate. We observed that the perceived emotional intensity/salience of neutral faces was enhanced by false feedback of increased heart rate. Regional changes in neural activity corresponding to this behavioural interaction were observed within included right anterior insula, bilateral mid insula, and amygdala. In addition, right anterior insula activity was enhanced during by asynchronous relative to synchronous cardiac feedback even with no change in perceived or actual heart rate suggesting this region serves as a comparator to detect physiological mismatches. Finally, BOLD activity within right anterior insula and amygdala predicted the corresponding changes in perceived intensity ratings at both a group and an individual level. CONCLUSIONS/SIGNIFICANCE Our findings identify the neural substrates supporting behavioural effects of false physiological feedback, and highlight mechanisms that underlie subjective anxiety states, including the importance of the right anterior insula in guiding second-order "cognitive" representations of bodily arousal state

    Modulation of emotional appraisal by false physiological feedback during fMRI

    Get PDF
    BACKGROUND James and Lange proposed that emotions are the perception of physiological reactions. Two-level theories of emotion extend this model to suggest that cognitive interpretations of physiological changes shape self-reported emotions. Correspondingly false physiological feedback of evoked or tonic bodily responses can alter emotional attributions. Moreover, anxiety states are proposed to arise from detection of mismatch between actual and anticipated states of physiological arousal. However, the neural underpinnings of these phenomena previously have not been examined. METHODOLOGY/PRINCIPAL FINDINGS We undertook a functional brain imaging (fMRI) experiment to investigate how both primary and second-order levels of physiological (viscerosensory) representation impact on the processing of external emotional cues. 12 participants were scanned while judging face stimuli during both exercise and non-exercise conditions in the context of true and false auditory feedback of tonic heart rate. We observed that the perceived emotional intensity/salience of neutral faces was enhanced by false feedback of increased heart rate. Regional changes in neural activity corresponding to this behavioural interaction were observed within included right anterior insula, bilateral mid insula, and amygdala. In addition, right anterior insula activity was enhanced during by asynchronous relative to synchronous cardiac feedback even with no change in perceived or actual heart rate suggesting this region serves as a comparator to detect physiological mismatches. Finally, BOLD activity within right anterior insula and amygdala predicted the corresponding changes in perceived intensity ratings at both a group and an individual level. CONCLUSIONS/SIGNIFICANCE Our findings identify the neural substrates supporting behavioural effects of false physiological feedback, and highlight mechanisms that underlie subjective anxiety states, including the importance of the right anterior insula in guiding second-order "cognitive" representations of bodily arousal state

    Site-directed mutations in the C-terminal extension of human aB-Crystalline affect chaperone function and block amyloid fibril formation

    Get PDF
    Copyright: 2007 Treweek et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Background. Alzheimer’s, Parkinson’s and Creutzfeldt-Jakob disease are associated with inappropriate protein deposition and ordered amyloid fibril assembly. Molecular chaperones, including aB-crystallin, play a role in the prevention of protein deposition. Methodology/Principal Findings. A series of site-directed mutants of the human molecular chaperone, aBcrystallin, were constructed which focused on the flexible C-terminal extension of the protein. We investigated the structural role of this region as well as its role in the chaperone function of aB-crystallin under different types of protein aggregation, i.e. disordered amorphous aggregation and ordered amyloid fibril assembly. It was found that mutation of lysine and glutamic acid residues in the C-terminal extension of aB-crystallin resulted in proteins that had improved chaperone activity against amyloid fibril forming target proteins compared to the wild-type protein. Conclusions/Significance. Together, our results highlight the important role of the C-terminal region of aB-crystallin in regulating its secondary, tertiary and quaternary structure and conferring thermostability to the protein. The capacity to genetically modify aB-crystallin for improved ability to block amyloid fibril formation provides a platform for the future use of such engineered molecules in treatment of diseases caused by amyloid fibril formation

    High disease impact of myotonic dystrophy type 2 on physical and mental functioning

    Get PDF
    The aim of the study was to investigate health status in patients with myotonic dystrophy type 2 (DM2) and determine its relationship to pain and fatigue. Data on health status (SF-36), pain (MPQ) and fatigue (CIS-fatigue) were collected for the Dutch DM2 population (n = 32). Results were compared with those of sex- and age-matched adult-onset myotonic dystrophy type 1 (DM1) patients. In addition, we compared the obtained scores on health status of the DM2 group with normative data of the Dutch general population (n = 1742). Compared to DM1, the SF-36 score for bodily pain was significantly (p = 0.04) lower in DM2, indicating more body pain in DM2. DM2 did not differ from DM1 on any other SF-36 scales. In comparison to the Dutch population, DM2 patients reported lower scores (indicating worse clinical condition) on the physical functioning, role functioning-physical, bodily pain, general health, vitality, social functioning, and role functioning-emotional scales (p < 0.01 on all scales). The difference was most profound for the physical functioning scale. In the DM2 group the severity of pain was significantly correlated with SF-36 scores for bodily pain (p = 0.003). Fatigue was significantly correlated with the SF-36 scores for role functioning-physical (p = 0.001), general health (p = 0.02), and vitality (p = 0.02). The impact of DM2 on a patients’ physical, psychological and social functioning is significant and as high as in adult-onset DM1 patients. From the perspective of health-related quality of life, DM2 should not be considered a benign disease. Management of DM2 patients should include screening for pain and fatigue. Symptomatic treatment of pain and fatigue may decrease disease impact and help improve health status in DM2, even if the disease itself cannot be treated

    For which side the bell tolls: The laterality of approach-avoidance associative networks

    Get PDF
    The two hemispheres of the brain appear to play different roles in emotion and/or motivation. A great deal of previous research has examined the valence hypothesis (left hemisphere = positive; right = negative), but an increasing body of work has supported the motivational hypothesis (left hemisphere = approach; right = avoidance) as an alternative. The present investigation (N = 117) sought to provide novel support for the latter perspective. Left versus right hemispheres were briefly activated by neutral lateralized auditory primes. Subsequently, participants categorized approach versus avoidance words as quickly and accurately as possible. Performance in the task revealed that approach-related thoughts were more accessible following left-hemispheric activation, whereas avoidance-related thoughts were more accessible following right-hemispheric activation. The present results are the first to examine such lateralized differences in accessible motivational thoughts, which may underlie more “downstream” manifestations of approach and avoidance motivation such as judgments, decision making, and behavior

    Pathoadaptive mutations of Escherichia coli K1 in experimental neonatal systemic infection

    Get PDF
    Although Escherichia coli K1 strains are benign commensals in adults, their acquisition at birth by the newborn may result in life-threatening systemic infections, most commonly sepsis and meningitis. Key features of these infections, including stable gastrointestinal (GI) colonization and age-dependent invasion of the bloodstream, can be replicated in the neonatal rat. We previously increased the capacity of a septicemia isolate of E. coli K1 to elicit systemic infection following colonization of the small intestine by serial passage through two-day-old (P2) rat pups. The passaged strain, A192PP (belonging to sequence type 95), induces lethal infection in all pups fed 2–6 x 106 CFU. Here we use whole-genome sequencing to identify mutations responsible for the threefold increase in lethality between the initial clinical isolate and the passaged derivative. Only four single nucleotide polymorphisms (SNPs), in genes (gloB, yjgV, tdcE) or promoters (thrA) involved in metabolic functions, were found: no changes were detected in genes encoding virulence determinants associated with the invasive potential of E. coli K1. The passaged strain differed in carbon source utilization in comparison to the clinical isolate, most notably its inability to metabolize glucose for growth. Deletion of each of the four genes from the E. coli A192PP chromosome altered the proteome, reduced the number of colonizing bacteria in the small intestine and increased the number of P2 survivors. This work indicates that changes in metabolic potential lead to increased colonization of the neonatal GI tract, increasing the potential for translocation across the GI epithelium into the systemic circulation
    • 

    corecore