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Abstract

Mutations of the aryl hydrocarbon receptor interacting protein (AIP) have been associated with familial isolated pituitary
adenomas predisposing to young-onset acromegaly and gigantism. The precise tumorigenic mechanism is not well
understood as AIP interacts with a large number of independent proteins as well as three chaperone systems, HSP90, HSP70
and TOMM20. We have determined the structure of the TPR domain of AIP at high resolution, which has allowed a detailed
analysis of how disease-associated mutations impact on the structural integrity of the TPR domain. A subset of C-terminal a-
7 helix (Ca-7h) mutations, R304* (nonsense mutation), R304Q, Q307* and R325Q, a known site for AhR and PDE4A5 client-
protein interaction, occur beyond those that interact with the conserved MEEVD and EDDVE sequences of HSP90 and
TOMM20. These C-terminal AIP mutations appear to only disrupt client-protein binding to the Ca-7h, while chaperone
binding remains unaffected, suggesting that failure of client-protein interaction with the Ca-7h is sufficient to predispose to
pituitary adenoma. We have also identified a molecular switch in the AIP TPR-domain that allows recognition of both the
conserved HSP90 motif, MEEVD, and the equivalent sequence (EDDVE) of TOMM20.
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Introduction

Recently, mutations in aryl hydrocarbon receptor interacting

protein (AIP) [1,2] have been linked to familial isolated pituitary

adenomas (FIPA) [3–5], a condition most often characterized by

young-onset growth hormone and prolactin-secreting pituitary

tumors (reviewed by [6]), which leads to acromegaly and gigantism.

The human AIP gene encodes a 37 kDa protein of 330 amino acids

that, based on similarities to other proteins, is predicted to have an

N-terminal immunophilin-like domain [7] and a C-terminal

tetratricopeptide repeat (TPR) domain. Typically, TPR domains

consist of three sets of a highly degenerate consensus sequence of 34

amino acids, often arranged in tandem repeats, formed by two

alpha-helices forming an antiparallel amphipathic structure and a

final C-terminal a-7 helix (Ca-7h; Fig. 1A). The TPR domain of AIP

appears to be similar to the corresponding domains of HOP, CHIP,

CYP40, PP5, FKBP51 and FKBP52 and the aryl hydrocarbon

receptor-interacting protein like 1 (AIPL1) (Fig. 1A). Although the

immunophilin domain of AIP shows significant homology to

equivalent domains of FKBP12 and FKBP52, AIP does not bind

immunosuppressant drugs such as FK506 and rapamycin [2] and

displays no PPIase activity [8,9].

AIP has been reported to interact with a number of different

proteins: chaperones (HSP90, HSP70, TOMM20), and client

proteins including nuclear receptors (AhR, ERa), phosphodiester-

ase 4A5 (rat isoform of human PDE4A4) and PDE2A3, survivin,

G proteins, RET and EBNA3 amongst others (see recent review

by [10]). Interestingly, HSP90, HSP70 and TOMM20 share a

common conserved C-terminal motif, EEVD (HSP90 and HSP70)

and DDVE (TOMM20) that potentially act as the binding sites for

the AIP TPR-domain [11,12]. A similar motif, EELD, has been

identified in PDE4A5 [13]. HSP90 is a molecular chaperone that

is involved in the maturation of many signal transduction proteins

([14–16]), while HSP70 is a more generalised protein-folding

chaperone [17,18]. In contrast, TOMM20 acts as a receptor for

unfolded proteins destined for translocation across the outer

mitochondrial membrane [19]. Together, these chaperones are

responsible for the activation and maturation of a vast array of

other proteins.

AhR, a client protein of the HSP90-AIP complex, may function

as a tumor suppressor that becomes silenced. [4,5,20–25], but its

precise role in predisposition to pituitary adenoma is not well

understood. AhR binds environmental dioxins, such as the non-

metabolizable agonist 2,3,7,8 tetra-chlorodibenzo-r-dioxin
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(TCDD), which is known to promote tumorigenesis, but it is

unclear whether this has a role in AIP-related tumorigenesis.

The cAMP pathway is important for somatotroph cell function

and proliferation. As AIP interacts with phosphodiesterases

(PDE4A5 and PDE2A), enzymes which degrade cAMP, this

interaction may have an important role in AIP-related pituitary

tumorigenesis. AIP has an opposite effect on PDE4A5 and PDE2A

function [13,26,27] and very little data exist on the possible

interaction with other PDEs. As there are over 52 different PDEs

known, this aspect remains an important field of study.

Recently, AIP was shown to inhibit ERa transcriptional activity

and AIP mutations lead to enhanced ERa transcriptional activity.

Prolonged and a high-level exposure to estrogen is a known risk

factor for developing a variety of tumors [28–31] including

pituitary tumors [32,33]. Furthermore, AIP has also been shown

to upregulate PLAGL1 (also known as ZAC1), a zinc finger

protein with apoptotic and cell cycle arrest activity [34,35].

Around 75% of AIP mutations completely disrupt the C-

terminal TPR domain and/or the Ca-7h [36]. The vast majority

of the missense variants affect the two final TPR-motifs and the

Ca-7h, both of which are involved in protein interactions. The

client proteins AhR and PDE4A5 have been shown to bind to the

Ca-7h part of the AIP molecule. How the lack of AIP or its

dysfunction leads to tumorigenesis and how interactions are

disrupted that predispose cells to tumorigenesis are poorly

understood and difficult to predict as AIP interacts directly with

a number of proteins and indirectly, via the three chaperone

systems, with a bewildering number of proteins [10].

Figure 1. PyMol cartoon of the structure of human AIP. (A), PyMol cartoon of the HSP90b EDASRMEEVD-peptide (green) bound to the TPR
domain of AIP (cyan). Only SRMEEVD of the peptide was visible. The structure was obtained at 2.0 Å (PDB, 4AIF) while that with the TOMM20
AQSLAEDDVE-peptide was obtained at 1.9 Å (PDB, 4APO, not shown). The A and B helices of each TPR motif (TPR1 to 3) and the C-terminal alpha
helix (a-7) are indicated. (B), Superimposition of peptide conformations of HSP90b EDASRMEEVD (green), TOMM20 AQSLAEDDVE (cyan) bound to AIP
(only SRMEEVD and AEDDVE of the peptides is shown), and HSP90a DTSRMEEVD (yellow) peptide bound to CHIP, showing that the peptide
backbone conformation is essentially the same.
doi:10.1371/journal.pone.0053339.g001

AIP TPR-Domain on Pituitary Adenoma Predisposition
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Here we aim to classify the effect of a variety of FIPA associated

mutations on the structural integrity of AIP. We present the

structure showing the molecular interactions of the TPR domain

of AIP in complex with the peptide-binding motifs of HSP90 and

TOMM20. Our results show that no known disease-associated

mutation causes loss of binding of chaperones alone. However, a

subset of mutations affects binding of client proteins to the Ca-7h

of AIP. Consequently, loss of client protein interaction with the

Ca-7h of AIP is sufficient for pituitary adenoma predisposition.

Materials and Methods

Protein Purification
The TPR domain (residues 166–330) of human AIP was

expressed as a PreScission cleavable His-tagged protein from

pTWO-E (pET-17b derived; personal communication, A. W.

Oliver, Sussex University). The TPR domain was purified by

talon-affinity chromatography (Clontech, Oxford, UK), then

concentrated and desalted on a HIPrep 26/10 desalting column

equilibrated in 20 mM Tris pH 7.5 containing 1 mM EDTA. The

sample was then cleaved overnight with GST-tagged PreScision

protease. The cleaved protein was subsequently passed through a

GST column equilibrated in 20 mM Tris pH 7.5, 1 mM EDTA

and 150 mM NaCl and then through a second Talon column to

remove any remaining uncleaved protein. The flow through was

then concentrated and subjected to superdex 75HR gel-filtration

chromatography equilibrated in 20 mM Tris pH 7.5, 1 mM

EDTA, 1 mM DTT and 500 mM NaCl. Pure TPR domain were

concentrated and then desalted on a HIPrep 26/10 column

equilibrated in 20 mM Tris pH 7.5 containing 1 mM EDTA. The

protein was stored frozen at 2 mg ml21.

Structure Determination and Analysis
Human AIP TPR-domain was mixed with EDASRMEEVD

(HSP90b) or AQSLAEDDVE (TOMM20) peptide at a 1:20

molar ratio and concentrated to 15 mg ml21. Crystals of AIP

TPR-domain in complex with peptide were obtained at

7.5 mg ml21 from sitting well drops equilibrated against 1 M

ammonium sulphate, 1% PEG 3350, 0.1 M Bis-Tris pH5.5.

Crystals appeared at 14uC and were harvested by successive

transfer to crystallization buffer with increasing glycerol to 30%.

Crystals were flash frozen in liquid nitrogen. Diffraction data were

collected from crystals frozen at 100 K on Station I03 at the

Diamond Light Source (Didcot, UK). Refinement was carried out

using Phenix Refine [37,38], and manual rebuilding was

Figure 2. Binding of peptide to the TPR domains of Hop and AIP. (A), PyMol Space-filling model showing the binding of the MEEVD peptide
of HSP90 to the TPR domain of Hop TPR2A and (B), the EDASRMEEVD peptide of HSP90b bound to the TPR domain of AIP (only SRMEEVD of the
peptide is shown). (C), Superimposition of the peptides bound to the TPR domains of HOP2A (yellow) and AIP (green).
doi:10.1371/journal.pone.0053339.g002

AIP TPR-Domain on Pituitary Adenoma Predisposition
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performed in Coot [39]. All other programs used were part of the

CCP4 suite [40]. Evolutionary conservation was calculated using

the ConSurf server [41–43] and conservation, as well as other

PDB files, displayed using PyMol (The PyMOL Molecular

Graphics System, Version 1.2r3pre, Schrödinger, LLC, USA).

Isothermal Titration Calorimetry and HSP90 ATPase
Assays

The heat of interaction was measured on an ITC200 microcal-

orimeter (Microcal), with a cell volume of 200 mL, under the same

buffer conditions (20 mM Tris, pH 7.5, containing 5 mM NaCl)

at 30uC. Twenty 1.9 mL aliquots of AIP TPR-domain at 350 mM

were injected into 30 mM of human HSP90b. For peptide

interactions twenty 1.9 mL aliquots of peptide ranging from 350

to 600 mM were injected into 30 mM of AIP TPR-domain. Heats

of dilution were determined in a separate experiment by diluting

protein or peptide into buffer, and the corrected data were fitted

using a non-linear least-squares curve-fitting algorithm (Microcal

Origin) with three floating variables: stoichiometry, binding

constant and change in enthalpy of interaction. ATPase assays

were previously described [44–46].

Co-immunoprecipitation
The vectors used were pCI-neo-AIP-Flag and pcDNA 3.0-Myc-

AIP, containing wild-type AIP cDNA with the Flag tag located

downstream AIP and the Myc tag placed upstream, respectively.

GH3 cells (3.66106) were cultured in Dulbeccos Modified Eagles

Medium (SIGMA) containing 10% fetal bovine serum and 1%

penicillin/streptomycin (SIGMA) for 24 hours before transfection

with 2.5 mg of each vector, using Lipofectamine 2000 (Life

Technologies). The cells were then lysed (20 mM Tris-Cl pH 8.0,

200 mM NaCl, 1 mM EDTA pH 8.0, 0.5% Igepal and Complete

Protease Inhibitor Cocktail [Roche]) and ,150 mg of total protein

was used for immunoprecipitation with 1 mg of TOMM20 peptide

and 2 mg of either anti-Myc (SIGMA), anti-Flag (SIGMA) or

mouse IgG (SIGMA) antibodies, respectively. Co-immunoprecip-

itation was carried out with Protein G Sepharose 4 Fast Flow (GE

Healthcare) according to the protocol suggested by the manufac-

turer. Finally, the proteins were eluted by incubation for 5 minutes

at 95uC with 40 ml of 16 Laemmli buffer, fractionated by SDS-

PAGE and then transferred to a nitrocellulose membrane. Proteins

were detected with 1:3000 of either anti-Myc or anti-Flag

antibodies. The bands were visualized on an Odyssey infrared

scanner after incubation with of 1:20000 goat anti-mouse 680

IRDye secondary antibody (Licor). As controls, we performed the

Table 1. Crystallography statistics.

Data collection HSP90 (SRMEEVD)* TOMM20 (AEDDVE)*

Space group C2 C2

Unit cell a, b, c (Å)
a b, c (u)

63.82, 104.49, 69.27
90, 97.41, 90

60.2, 106.82, 68.47
90, 100.85, 90

Maximal resolution (Å) 2.01 1.9

Highest resolution bin 2.0622.01 221.9

Observations 98171 92304

Unique reflections 29974 28523

Completeness (%) 99.4(98.5) 84.8 (68.1)

Rmerge 0.061(0.588) 0.049 (0.246)

Mean I/sI 10.9(2.4) 13.6 (4.2)

Multiplicity 3.3(3.2) 3.2 (3.1)

Refinement HSP90 (SRMEEVD)* TOMM20 (AEDDVE)*

Total atoms 2732 3007

Protein atoms 2402 2486

Ligand atoms 100 94

Residues modeled D/1-7;E1-7 D/1-6; E/1-6

Non-protein residues modeled 327 waters, 1SO4 484 waters, 1 SO4, 1 PEG

Resolution range (Å) 40.422.01 28.4621.9

Rconv 0.1879 0.1809

Rfree 0.236 0.2344

Residues in most favored regions (%) 98 100

Residues in allowed regions (%) 99.7 100

Residues in outlier regions (%) 0.3 0

RMSD bond (Å) 0.006 0.006

RMSD angle 0.960 0.906

Mean B-factor (Å2) Protein 36.03
Solvent 50.34

Protein 29.98
Solvent 45.1

*10-mer peptides were used in the crystallization, but only 6–7 resides were visible.
doi:10.1371/journal.pone.0053339.t001
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same experiments using the following combinations of vectors:

pCI-neo-Flag+pcDNA 3.0-Myc, pCI-neo-AIP-Flag+pcDNA 3.0-

Myc, pCI-neo-Flag+pcDNA 3.0-Myc-AIP and no co-transfection.

Results

The Structural Features of the TPR Domain of AIP in
Complex with HSP90 and TOMM20 Peptide

TPR domains that bind HSP90, HSP70 and TOMM20 are

known to bind a specific short conserved motif at the C-terminal

end of these chaperones (HSP90, MEEVD; HSP70, IEEVD; and

TOMM20, EDDVE) [11,12,47]. The structures of the AIP TPR-

domain in complex with peptide fragments from human HSP90b
and TOMM20 were solved at 2.0 (PDB 4AIF) and 1.9 Å (PDB

4APO) resolution, respectively (Table 1). The TPR domain of AIP

is similar to other TPR-domain proteins consisting of three pairs of

anti-parallel helices and a Ca-7h (Fig. 1A). We found that the

EDASRMEEVD (HSP90) and AQSLAEDDVE (TOMM20)

peptides bind within the TPR-domain cleft and adopt a similar

backbone conformation (Fig. 1). The mode of interaction of these

peptides resembles that of the HSP90 and HSP70 C-terminal

peptides binding to the TPR-domain of CHIP rather than that of

HOP [11,12] (Fig. 1 and 2).

The residues lining the TPR-binding site are highly conserved

(Fig. 3). The structures show that the C-terminal carboxylate

group and the C-terminal aspartate (HSP90) or glutamate

(TOMM20) side-chain are involved in a series of hydrogen bonds

that is reminiscent of the carboxylate clamp seen in the MEEVD-

HOP complex [11] (Fig. 4). In the AIP-EDASRMEEVD (HSP90)

structure the C-terminal carboxylic acid makes direct hydrogen

bonds to one of the ring nitrogens of His 183 and to the amine

nitrogen of Asn 187 and Asn 236. The aspartate group makes

water-mediated interactions to the main-chain carbonyl of Pro

232, to the carboxylic-acid oxygen of Asn 236, to the amine-group

nitrogen of Lys 266 as well as an intramolecular interaction to the

main-chain carbonyl of the serine of the EDASRMEEVD peptide.

The C-terminal aspartic acid side-chain carboxyl-group also forms

a direct interaction with the amine group of Lys 266.

For the peptide valine the main-chain carbonyl is hydrogen

bonded to the secondary amine of Arg 191 via a water molecule,

and via this same water molecule but also directly, to the

carboxylic-acid oxygens of the second glutamate residue of the

HSP90 peptide (EDASRMEEVD). The other carboxyl-group

oxygen of this glutamate (EDASRMEEVD) is hydrogen-bonded

to the secondary amine of Arg 191, while the other oxygen forms

an intramolecular interaction with the main-chain amide of serine

of the HSP90 peptide. The main-chain amide group of the peptide

valine is also hydrogen bonded to one of the oxygens of the second

glutamate of the peptide. The valine side-chain is itself packed into

a hydrophobic pocket formed by the side chains of Asn 187, Tyr

190, Arg 191 and Asn 236.

The carbonyl of the second glutamate of the HSP90 peptide

(EDASRMEEVD) forms a direct interaction with the side-chain

amine of Lys 266, and via a water molecule to the side-chain

amine group of Lys 270. The side-chain hydroxyl of Tyr 190

forms a direct interaction with the main-chain carbonyl of the

second glutamate in the HSP90 peptide.

The methionine of the HSP90 peptide is itself packed into a

hydrophobic pocket formed by the side chains of Val 265, Lys 266,

Phe 269, Lys 270 and Leu 298. Interestingly, Lys 266 was

predicted to be a ligand-binding residue [48]. However, the main-

chain amine of the peptide methionine also forms both a direct

interaction and a water-mediated hydrogen bond with the side-

chain amine of Lys 270. The main-chain carbonyl of the peptide

arginine directly interacts with the side-chain amine of Lys 266,

while the main-chain carbonyl of the peptide serine forms

Figure 3. PyMol diagram showing the conservation of residues on the surface of AIP TPR-domain. The most highly conserved residues
line the cavity of the TPR domain in which the TPR-motif containing peptides bind to.
doi:10.1371/journal.pone.0053339.g003
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hydrogen bonds via a water molecule to the side-chain amine of

Lys 266.

Interactions between the TOMM20 peptide and the TPR

domain of AIP are similar but not identical. The main differences

result due to the need to pack the first glutamate side-chain of the

TOMM20 peptide (AQSLAEDDVE) into the hydrophobic pocket

that accepts the methionine residue in the case of HSP90 peptide

(MEEVD) (Fig. 4). While the side chain of this glutamate enters

the hydrophobic pocket the carboxylate oxygens point back

towards and interacts with the side-chain amine of Lys 266.

Consequently, Lys 266 adopts an alternative conformation to that

seen with the HSP90 bound peptide. The conformational change

in Lys 266 acts like a switch that not only allows the binding of the

TOMM20 glutamate in the methionine pocket, but also allows the

longer C-terminal glutamate side-chain of TOMM20 (Asp in

HSP90), to pack between the side chain of Pro 232 and Lys 266;

and consequently form a hydrogen bond via a water molecule with

the side-chain amine of Asn 264 (Fig. 4C).

Although attempts to obtain the structure of an equivalent

HSP70 peptide bound to the TPR domain of AIP failed, we

assume that the isoleucine (IEEVD) binds to the same hydropho-

bic pocket as the methionine of HSP90.

Dimerization of the AIP TPR-domain and the Role of Arg
304

The crystal structure of the TPR domain of AIP in complex

with peptide revealed the possibility that the TPR domain might

form a biological dimer (Fig. 5A and B). Significantly, Arg 304,

whose missense mutation is linked to disease, was found to form

interactions with the aspartates of the TOMM20 peptide

(AQSLAEDDVE) bound in the neighbouring TPR domain. In

contrast, in the HSP90 peptide bound structure Arg 304 is

disordered and no significant interactions are made. The question

therefore arises as to whether Arg 304 is naturally involved in

intermolecular or intramolecular interactions with bound peptide

(or intact chaperone) and whether the TPR AIP-domain forms a

biological dimer. It has been previously reported that two

molecules of AIP can be found in some HSP90 complexes, but

whether AIP was a biological dimer in these complexes was not

established [49].

We conducted reciprocal co-immunoprecipitations experiments

(Fig. 5C) in which cells were transfected with Flag- and Myc-

tagged AIP in the presence of the TOMM20 peptide. We found

that using either anti-Flag or anti-Myc antibodies failed to co-

immunoprecipitate the tagged proteins suggesting that AIP

dimerization is not biologically relevant. Furthermore, using

isothermal titration calorimetry (ITC) the stoichiometry of the

interaction between the TPR domain of AIP and HSP90b was

found to be 0.3:1, showing that one molecule of AIP interacts with

a dimer of HSP90 (Table 2). In addition, the E192R AIP mutant,

where Glu 192 forms the core of the interaction interface of the

AIP dimer (Fig. 5D), did not alter the stoichiometry or

thermodynamics of the interaction with HSP90b (0.47:1, AIP-

TPR-E192R: HSP90b, Table 2). We next tested the effect of

mutating Arg 304, which directly interacts with TOMM20 peptide

bound in the neighbouring AIP molecule. The binding of

HSP90b, HSP70 and TOMM20 peptides to the R304A and

R304Q mutants was unaltered relative to the wild type interaction

(Table 2). Failure to form stable dimerization of AIP, caused by

these mutations, would significantly change the thermodynamic

properties of the interaction. We therefore conclude that the

dimerization interface seen in the crystals is not a true biological

interface, but a crystallographic one.

Selectivity in the Binding of Proteins to the TPR Domain
of AIP

We next wanted to understand the selectivity for the different

chaperones that bind to AIP and utilised ITC to measure the

affinity for these interactions. The TPR domain of AIP bound full-

length HSP90b with a Kd = 13.361.8 mM and showed a

favourable entropic contribution (Table 2). The peptides repre-

senting the extreme C-terminus of HSP90 (MEEVD), HSP90b
(EDASRMEEVD), HSP90a (DDTSRMEEVD) and TOMM20

(AQSLAEDDVE) also bound with similar affinities

(Kd = 12.661.6; 14.461.0; 9.560.6 and 12.360.5 mM, respec-

tively; Table 2), suggesting that the core interaction between these

Figure 4. PyMOL diagram showing binding interactions. (A)
Interactions with HSP90b EDASRMEEVD peptide and (B), with TOMM20
AQSLAEDDVE peptide bound to the TPR domain of AIP. Peptide
residues that where visible (SRMEEVD and AEDDVE) are shown in red as
single letter code. Dotted blue lines represent hydrogen bonds and
green, the amino acid residues involved; red-colored spheres, water
molecules and yellow residues, residues solely in van der Waals contact.
The structures were obtained at 2.0 (PDB, 4AIF) and 1.9 Å (PDB, 4APO),
respectively. (C), Molecular switching in the TPR domain of AIP. The
alternative conformations of Lys 266 allow selection of the Hsp90
MEEVD- (green) or TOMM20 EDDVE-motif (cyan). Dotted blue lines
represent hydrogen bonds while red-colored spheres represent water
molecules.
doi:10.1371/journal.pone.0053339.g004
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chaperones and the TPR domain of AIP involves the terminal five

amino acids of these proteins.

Although we were unable to test the binding of intact PDE4A5

to AIP, we instead measured the affinity for the interaction of the

peptide TLEELDW, which contains the core binding sequence

LEELD (identified in PDE2A as LYDLD). The LEELD motif of

PDE4A5 is not a C-terminal sequence and its ability to bind to the

TPR domain is questionable. The binding affinity of the PDE4A5

peptide (TLEELDW; Kd = 64.563.2 mM) was found to be

significantly weaker than the equivalent peptides form HSP90a,

HSP90b and TOMM20 (Kd = 9.5, 14.4–18.6; and 12.3 mM,

respectively; Table 2). Furthermore, a structural analysis of the

PDE2A homologue indicates that the homologous LYDLD

sequence is unlikely to be accessible for binding to the TPR

domain of AIP as it is involved in folding of the protein.

Consequently, the interaction of AIP with PDE4A5 is not

mediated by binding to the LEELD peptide sequence.

AIP does not Affect the HSP90 ATPase Activity
The first TPR-domain protein shown to influence the ATPase

activity of HSP90 was Sti1p [45]. We wanted to see if AIP could

similarly affect HSP90 ATPase activity. A 20-fold molar excess of

full-length AIP did not influence the ATPase activity of HSP90

(Link to Supporting information).

Disease Associated Mutations of AIP
Nonsense, splice variant and frameshift mutations (Table 3)

clearly disrupt the TPR-domain of AIP and lead to a dysfunctional

Figure 5. PyMol cartoon showing dimerization of AIP TPR-domain through crystal lattice contacts. (A), The AIP domains are in green
and yellow. Amino acid residues are in magenta or cyan, hydrogen bonds as blue dotted lines, water molecules as red spheres and bound TOMM20
AQSLAEDDVE-peptide used in the crystallization in gold. However, only residues AEDDVE are visible in the structure. The TPR domains are
symmetrically related and hydrogen bonding is shown in only one half of the figure. The cartoon shows that Arg 304 is hydrogen bounded directly to
the neighboring TOMM20 bound peptide (gold). (B), PyMol cartoon showing a close up of the main interactions between Arg 304 and bound peptide
used in the crystallization (AQLSLAED3D4VE) in panel A. However, only residues AED3D4VE are visible in the structure. (C), Co-immunoprecipitation of
Flag-AIP and Myc-AIP in the presence of TOMM20 peptide (AQSLAEDDVE). The results show that Flag-AIP and Myc-AIP do not co-immunoprecipitate.
M, molecular mass markers, with molecular mass indicated to the left of the panel; lane 1 and 5 AIP input (cleared lysate) protein; lane 2 and 6 are
anti-Myc co-immunoprecipitation, lanes 3 and 7 are anti-Flag co-immunoprecipitations, while lanes 4 and 8 are IgG control. Lanes 1–4 (first gel) was
blotted for Myc tag and lanes 5–8 (second gel) for Flag tag. The arrow indicates the position where the flag- and myc-tagged AIP runs (40 Kd). (D),
The core interaction of the AIP dimerization interface shows that E192 is buried and shielded from solvent by Ala 312, Arg 188 and Trp 279.
doi:10.1371/journal.pone.0053339.g005
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protein. However, the effect of missense mutations is difficult to

predict. We have used our structure to define mutations associated

with disease to understand how they might affect the function of

this domain. Many of the missense mutations are involved in the

folding and stability of the TPR AIP-domain. C238Y, K241E,

I257V, R271W, and possibly A299V all disrupt either hydropho-

bic or polar interactions that impact on the folding of the domain

(Table 3). In fact, attempts to purify C238Y and A299V resulted in

much of the protein aggregating suggesting that the proteins were

at least partly unfolded. In contrast, R304* (nonsense mutation),

R304Q, Q307* and R325Q were identified as ‘disease-associated’

mutations that, in vitro at least, do not disrupt chaperone binding.

Our ITC results show that for R304A and R304Q the HSP90,

HSP70 and TOMM20 peptides bind normally (Table 2). Struc-

tural analysis showed that the Gln 307 and Arg 325 amino acid

residues (all clearly visible in the TOMM20-AIP structure), are

further away from the TPR domain-binding site than Arg 304,

and are not involved in packing interactions or in binding of the

bound conserved peptide motifs. Thus, at least in vitro, these

residues do not disrupt chaperone binding although they have

been strongly implicated in causing FIPA [4,6,50–52]. Further-

more, the extreme C-terminus of AIP has been shown to represent

the binding site for the client proteins AhR and PDE4A5 [48,52].

These results suggest that disruption of client-protein binding

alone is sufficient for pituitary tumor predisposition.

Further analyses of the extreme C-terminus of the Ca-7h shows

that there are a number of conserved charged and hydrophobic

residues (Fig. 6). These residues are predicted to be part of a helical

structure (PSIPRED, UCL Department of Computer Science,

Bioinformatics Group), and form two conserved regions on either

side of the helix (Fig. 6C). Hydrophobic residues beyond Ile 313,

the last residue in the structure that is involved in packing with the

main fold of the domain, would not be buried if the Ca-7h

continues as such into solvent. The conservation of these residues

suggests that they represent a binding site for specific client

proteins; especially for AhR and PDE4A5, which are client

proteins known to interact with this helix (Fig. 6D).

Discussion

The structure of the TPR domain of AIP in complex with

peptide representing the TPR-domain binding motif from HSP90

and TOMM20 were determined to high resolution. The structure

with TOMM20 peptide showed that electron density for residues

Asp 172 to Arg 325 of the TPR domain was visible. We show that

HSP90, HSP70 and TOMM20, but not the PDE4A5

TLEELDW-peptide, can interact with the TPR domain of AIP

with similar affinity. Using ITC we show that the stoichiometry of

the interaction between AIP and intact HSP90 was 0.5:1

(AIP:HSP90).

AIP binding of these conserved peptide sequences is similar to

that observed for CHIP, rather than that seen with HOP. Unlike

HOP-bound peptides, for AIP and CHIP the upstream sequence

of the peptides is directed up and out of the binding cleft to avoid

interaction with these upstream sequences, which differ between

HSP70 and HSP90 [11,12]. HOP is a co-chaperone of HSP90

that not only acts as scaffold between HSP70 and HSP90, but also

silences the ATPase activity of HSP90 [45]. It thus stalls the

ATPase-coupled conformational cycle of HSP90 and allows client

protein loading from HSP70 to HSP90 [11,44,45]. HOP binds

HSP70 and HSP90 using separate TPR-domain modules [11],

and therefore can associate with both chaperone systems

simultaneously. CHIP on the other hand is a U box E3 ubiquitin

ligase that binds either HSP70 or HSP90 using a single TPR-

domain module and appears to ubiquitinate client proteins of

these chaperone systems [12,53,54]. The conformation that the

bound peptides adopt with HOP and CHIP/AIP is largely

dependent on the position of the hydrophobic pockets that accept

the methionine and valine amino acid residues of the conserved

binding motif MEEVD, in the case for HSP90. Thus, the TPR

domains can be reclassified depending on the relative position of

these hydrophobic pockets. When both pockets are on the same

side of the TPR-binding cleft we observe the HOP-type mediated

binding (cis-mode). When the methionine pocket is on the other

side we see the CHIP/AIP (trans-mode) of binding. The trans-mode

of binding appears to be used where numerous similarly related

peptides are binding to the same TPR domain.

Another interesting feature by which AIP accommodates these

different TPR-binding sequences is by way of a specific side chain

rearrangement (Fig. 4C). The methionine side-chain of the

conserved MEEVD motif being hydrophobic in nature can enter

the appropriate hydrophobic pocket, while for the TOMM20

glutamate its side chain enters the hydrophobic pocket but the

carboxylic acid group points back out and interacts with the side-

chain amine group of Lys 266. The ‘switched’ conformation of Lys

266 then allows the side-chain of the C-terminal glutamate to pack

between Lys 266 and Pro 232 and to form a water-mediated

interaction to the side-chain amine of Asn 264. In contrast, for the

HSP90 peptide, Lys 266 forms direct hydrogen bonds with the

carboxyl group of the shorter C-terminal aspartic acid side-chain

as part of the carboxylate clamp. Thus, the rearrangement that

allows the glutamate residue of TOMM20 (EDDVE) to bind the

Table 2. Isothermal titration calorimetry binding of AIP and
target.

TPR-domain Ligand Kd (mM) N
DH
(cal/mol)

DS
(Cal/mol/
deg)

WT FL-hHSP90b 13.361.8 0.30 24554 7.29

E192R FL-hHSP90b 11.161.3 0.47 24114 9.11

WT MEEVD (HSP90) 12.661.6 1.0 24140 8.75

WT EDASRMEEVD
(hHSP90b)

18.662.0
14.461.0

1.2
1.1

25041
23921

5.02
9.22

R304A EDASRMEEVD
(hHSP90b)

15.660.85 0.96 26435 0.76

R304Q EDASRMEEVD
(hHSP90b)

16.261.1 0.98 26417 0.76

WT DDTSRMEEVD
(hHSP90a)

9.560.6 1.2 23529 11.3

WT GSGPTIEEVD
(hHSP70)

18.161.9 0.63 26348 0.76

R304A GSGPTIEEVD
(hHSP70)

22.861.6 0.66 25456 3.24

R304Q GSGPTIEEVD
(hHSP70)

31.162.6 0.84 25498 2.48

WT AQSLAEDDVE
(hTomm20)

12.360.5 0.87 26765 0.16

R304A AQSLAEDDVE
(hTomm20)

16.660.5 0.69 24508 7.0

R304Q AQSLAEDDVE
(hTomm20)

22.562.2 0.66 26073 1.23

WT TLEELDW
(hPDE4A5)

64.563.2 0.89 24418 4.6

doi:10.1371/journal.pone.0053339.t002
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hydrophobic pocket also allows the longer C-terminal glutamate

side-chain of TOMM20 to be accommodated.

Analysis of the mutations that occur in AIP in the context of the

structure (residues visible were Asp 172 to Arg 325) has allowed us

to define their effects on the structural integrity of the AIP protein.

Most mutations affect the structural integrity of the TPR domain

(Table 3). However, no single mutation of the TPR domain

prevents chaperone binding alone. In contrast, a subset of disease-

associated mutations of conserved residues of the Ca-7h that affect

client-protein binding alone was identified. Our structures and

ITC data show that for the R304A/Q mutations chaperone

binding is unaffected. For Gln 307 and Arg 325 these residues are

further away from the TPR domain binding-site and are not

involved in domain packing interactions. Consequently, they are

not part of the chaperone-binding site of the TPR-domain.

Interestingly, the R325Q mutation is one residue short of the 5-

residue deletion that disrupts AhR binding [5,48,52]. Of these five

residues only two are conserved, Ile 327 and Phe 328 (Fig. 6),

which alone are unlikely to represent the complete interaction site

of AhR as this would be very weak. Consequently, the extensive

conservation of the Ca-7h is likely to represent an interaction site

for at least AhR. However, the R304Q mutation is also known to

slightly destabilize the PDE4A5 interaction [52], providing clear

evidence that the conservation in the Ca-7h represents a binding

site for client proteins (Fig. 6D). Our results therefore suggest that

the primary change in a subset of AIP mutant of the Ca-7h is loss

of association with, at least some, client proteins. Whether in vivo

this also leads to a breakdown in the association of HSP90 and

AIP is currently unknown and warrants further investigation.

However, it appears that AIP acts as a co-chaperone that delivers

client protein to HSP90, in common with other co-chaperones of

HSP90 such as HOP and CDC37 [14].

The destabilization of AhR would naturally imbalance assembly

of AhR/ARNT complex and it has been shown that levels of

either ARNT or ARNT2, but not both, are devoid in AIP-

deficient mouse pituitary tumors [55]. Furthermore, PDE2A,

which is AIP dependent, inhibits nuclear translocation of AhR by

lowering cAMP levels. Consequently, elevated and aberrant

cAMP signalling, often seen in pituitary tumors, may imbalance

AhR/ARNT and ARNT/Hif-1e signalling. Disruption of AhR

binding to AIP might also have profound effects on ERa-

dependent transcription. Loss of AIP binding to AhR causes

degradation of AhR [56]. Thus, a model can be proposed (Fig. 7),

which results in the destabilization of AhR, which could then

upregulate expression from ERa dependant promoters by

affecting several different mechanisms. Thus, AhR would not

compete for ERa cofactors and transcription factors, would fail to

promote the proteasomal degradation of ERa and would not be

available for binding to inhibitory xenobiotic response elements

(iXRE), that downregulate specific ERa-directed expression [57].

However, the exact effects on ERa levels and ERa-directed

transcription are currently unknown. Certainly work by Cai et al.,

[58] shows that AIP acts as a negative regular of ERa. Although,

the same authors show that ERa is still able to associate with AIP

Table 3. Classification of the effect TPR-AIP mutations on its structure.

Mutation Mutation type AIP domain Probable effect of the mutation

Q184* Nonsense TPR domain Non-functional

K201* Nonsense TPR domain Non-functional

E216* Nonsense TPR domain Non-functional

Q217* Nonsense TPR domain Non-functional

E222* Nonsense TPR domain Non-functional

C238Y Missense TPR domain Disrupts packing of hydrophobic core

Q239* Nonsense TPR domain Non-functional

C240R Missense TPR domain Disrupts packing of hydrophobic core

K241E Missense TPR domain Disrupts hydrogen bonding to Glu246

K241* Nonsense TPR domain Non-functional

I257V Missense TPR domain Disrupts packing of hydrophobic core

Y261* Nonsense TPR domain Ligand binding

K266A Missense TPR domain Ligand binding

Y268C Missense TPR domain Disrupts packing of hydrophobic core

Y268* Nonsense TPR domain Non-functional

R271W Missense TPR domain Disrupts hydrogen bonding to Asp287 and Ser255

A277P Missense TPR domain Disrupts hydrophobic packing against Tyr 247

A291M/E Missense TPR domain Disrupts packing of hydrophobic core. (Forms base of hydrophobic pocket
interacting with bound peptide)

A299V Missense TPR domain At start of Ca-7h and may disrupt some small degree of packing with Leu292

R304* Nonsense TPR domain Weakens PDE4A5 binding (see E304Q and [52]) and would disrupt AhR
binding

R304Q Missense TPR domain Weakens PDE4A5 binding (see [52])

Q307* Nonsense TPR domain Would disrupt AhR binding

R325Q Missense TPR domain Potentially client-protein binding. One residue short of the 5-residue deletion
that disrupts AhR binding

doi:10.1371/journal.pone.0053339.t003
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Figure 6. Sequence conservation of the Ca-7h of AIP. (A), sequence alignment showing conservation of amino acid residues. Ss, Salmo salar
(NM_001140060.1); Dr, Danio rerio (NM_214712.1); Rn, Rattus norvegicus (NM_172327.2); Mm, Macaca mulatta (NM_001194313); Ca, Chlorocebus
aethiops (O97628); Hs, Homo sapiens (FJ514478.1); Bt, Bos taurus (NM_183082.1), Xt, Xenopus (Silurana) tropicalis (NM_001102749.1) and Cc, Caligus
clemensi (BT080130.1). (I313+), Ile 313 represents the last residue in the sequence that is involved in packing interactions of the TPR domain.
Mutations associated with disease are indicated above the sequence. (* below the sequence), Amino acids at these positions are identical; (:), highly
conserved (.) or conserved. Arg 304 of Human AIP is shown in red type face. Numbers above the sequence (positions 1 to 15) represent residue
numbers of the helical wheel shown in panel B. (B), Helical wheel showing the position of identical and conserved residues form the alignment in
panel A for the Ca-7h of AIP. Orange, non-polar; green, polar uncharged; pink, acidic and blue, basic amino-acid residues. (C), PyMol cartoon showing
a hypothetical helix (residues beyond Arg 325) with the identical and highly conserved amino acid residues shown in panels A and B. Conserved
residues on one side of the helix are shown in green and on the other in yellow. Residue numbers shown are those in panel B, while those in brackets
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R304* mutant. Furthermore, these experiments used overex-

pressed AIP mutant and therefore do not address whether the

mutation fails to provide the normal negative regulatory effect on

ERa under normal AIP levels. Interestingly, other mutations, such

as Q217*, that disrupt the TPR domain were seen to activate ERa
directed transcriptional activity. Furthermore, it is also known that

tumor suppressor levels of PLAGL1 decline in the absence of

functional AIP, but the mechanism leading to this is poorly

understood. None-the-less the loss of an important tumor

suppressor is likely to have some role in the formation of pituitary

adenomas. However, it is evident that because of AIP’s

promiscuity a variety of biochemical changes in pituitary cells

occur under conditions when AIP is non functional. Consequently,

pituitary tumor predisposition is likely to be a result of these

biochemical changes that may all contribute to a varying degree in

the process.

In conclusion, our results show that Arg 304 does not play any

significant role in mediating AIP binding to HSP90, HSP70 or

are actual residue numbers in panel A. (D), The TPR-domain of the R304* mutant of AIP. Deletion of the terminal region of AIP (transparent helical
region) allows chaperone binding but disrupts association with PDE4A5 and AhR.
doi:10.1371/journal.pone.0053339.g006

Figure 7. Model showing the affect of mutant AIP on cellular signaling pathways. (A), Wild type AIP stabilizes AhR, which in turn
downregulates ERa dependent transcription by promoting the ubiquitination and proteasomal destruction of ERa, by competing for specific
cofactors required for ERa dependent transcription and by binding to iXRE sites that block ERa dependent transcription. AIP downregulates
transcription by ERa at ERE sites. AIP is also known to maintain cellular levels of PLAGL1 and PDE4A5. Small triangles represent ligand bound to their
appropriate receptor. (B), Mutant AIP fails to bind AhR, PDE4A5 and possibly ERa, resulting in unstable AhR and PDE4A5 and perhaps upregulation of
transcription at ERE sites. A decline in levels of PLAGL1 and changes in cAMP concentration also result. The question mark emphasizes that AIP may
or may not interact with ERa at ERE sites, but if it does it may fail to provide appropriate negative regulation.
doi:10.1371/journal.pone.0053339.g007
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TOMM20. Taken together with the highly conserved C-terminus

of AIP, and specific mutations that occur on the Ca-7h, our results

support the idea that this helix is involved in client protein

interactions, at least with AhR and PDE4A5, and that loss of such

interactions leads to a variety of biochemical changes in pituitary

cells that predisposes to pituitary adenoma. Consequently,

understanding the role AIP plays in maintaining and activating

Ca-7h interacting client proteins will help towards understanding

the cellular events that lead to pituitary tumor predisposition. This

study forms the springboard for more detailed investigations in

isolating AIP client-proteins that when deregulated predispose to

pituitary tumors.
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