84 research outputs found

    Additive Manufacturing of Poly(Methyl Methacrylate) Biomedical Implants with Dual-Scale Porosity

    Get PDF
    The development of bone permanent implants with a porous structure favoring their integration with the surrounding tissues is emerging as an attractive field of application of additive manufacturing (AM). This article reports on the investigation of the suitability of a hybrid AM technique, that is, computer-aided wet-spinning (CAWS), to fabricate novel poly(methyl meth- acrylate) (PMMA) constructs as porous implant prototypes. The optimization of the processing parameters to fabricate PMMA samples with a predefined internal porous structure and different external shapes is described. The study demonstrates that tailoring post-processing conditions represents a powerful tool to optimize samples macroscopic aspect, micromorphology, and mechanical properties. In particular, the possibility of obtaining a dual-scale porosity through the integration of the macroporous structure determined by the material lay-down pattern with a submicrometric porosity resulting from the phase inversion process governing polymer solidification, together with the possibility of purifying the employed commercial material from residual monomer during coagulation in ethanol, are reported as note- worthy advantages of CAWS over other AM techniques. A natural progression of this work is the development of relevant complex anatomical prototypes with tailored porosity by processing digital data obtained from computer tomography imaging of bone defects

    Brentuximab vedotin in combination with doxorubicin, vinblastine and dacarbazine for first-line treatment of stage IV HL: cost impact on subsequent lines in Italy

    Get PDF
    Introduction: This study estimates the change in the costs of second-line or later (2L+) treatments compared to the current scenario, associated with the introduction of brentuximab vedotin (Adcetris®) (BV) in combination with doxorubicin, vinblastine and dacarbazine (A+AVD) for the treatment of previously untreated (1L) patients with stage IV classical Hodgkin’s lymphoma (cHL). Methods: An economic model has been developed that estimates the variation in treatment costs of 2L+ associated with the introduction of BV in 1L from the point of view of the Italian National Health System over a time horizon of 3 years. The population eligible to receive a treatment of 2L+ has been estimated from the literature, considering an increasing consumption in the three years of A+AVD in 1L. Two main scenarios and several alternative scenarios were considered to address the uncertainty that characterizes the distribution of market shares of 2L+ treatments. Results: In the baseline scenario, over three years, the introduction of BV in 1L is associated with a cumulative reduction in treatment costs of 2L+ of € 1.74 M. In all scenarios, a reduction in treatment costs of 2L+ is confirmed, with a total saving that varies between € 5.6 M and € 1.3 M compared to the main scenarios. Conclusions: The present analysis shows that the introduction of A+AVD in 1L for the treatment of stage IV CD30+ cHL patients is associated with a reduction in treatment costs of 2L+, even if there are some limitations related to the uncertainty of real cost and population estimates

    The small heat shock protein B8 (HSPB8) modulates proliferation and migration of breast cancer cells

    Get PDF
    open12noBreast cancer (BC) is one of the major causes of cancer death in women and is closely related to hormonal dysregulation. Estrogen receptor (ER)-positive BCs are generally treated with anti hormone therapy using antiestrogens or aromatase inhibitors. However, BC cells may become resistant to endocrine therapy, a process facilitated by autophagy, which may either promote or suppress tumor expansion. The autophagy facilitator HSPB8 has been found overexpressed in some BC. Here we found that HSPB8 is highly expressed and differentially modulated by natural or synthetic selective ER modulators (SERMs), in the triple-positive hormone-sensitive BC (MCF-7) cells, but not in triple-negative MDA-MB-231 BC cells. Specific SERMs induced MCF-7 cells proliferation in a HSPB8 dependent manner whereas, did not modify MDA-MB-231 cell growth. ER expression was unaffected in HSPB8-depleted MCF-7 cells. HSPB8 over-expression did not alter the distribution of MCF-7 cells in the various phases of the cell cycle. Conversely and intriguingly, HSPB8 downregulation resulted in an increased number of cells resting in the G0/G1 phase, thus possibly reducing the ability of the cells to pass through the restriction point. In addition, HSPB8 downregulation reduced the migratory ability of MCF-7 cells. None of these modifications were observed, when another small HSP (HSPB1), also expressed in MCF-7 cells, was downregulated. In conclusion, our data suggest that HSPB8 is involved in the mechanisms that regulate cell cycle and cell migration in MCF-7 cells.openPiccolella, Margherita; Crippa, Valeria; Cristofani, Riccardo; Rusmini, Paola; Galbiati, Mariarita; Elena Cicardi, Maria; Meroni, Marco; Ferri, Nicola; Morelli, Federica F; Carra, Serena; Messi, Elio; Poletti, AngeloPiccolella, Margherita; Crippa, Valeria; Cristofani, Riccardo; Rusmini, Paola; Galbiati, Mariarita; Elena Cicardi, Maria; Meroni, Marco; Ferri, Nicola; Morelli, Federica F; Carra, Serena; Messi, Elio; Poletti, Angel

    An interaction study in mammalian cells demonstrates weak binding of HSPB2 to BAG3, which is regulated by HSPB3 and abrogated by HSPB8

    Get PDF
    The ten mammalian small heat shock proteins (sHSPs/HSPBs) show a different expression profile, although the majority of them are abundant in skeletal and cardiac muscles. HSPBs form hetero-oligomers and homo-oligomers by interacting together and complexes containing, e.g., HSPB2/HSPB3 or HSPB1/HSPB5 have been documented in mammalian cells and muscles. Moreover, HSPB8 associates with the Hsc70/Hsp70 co-chaperone BAG3, in mammalian, skeletal, and cardiac muscle cells. Interaction of HSPB8 with BAG3 regulates its stability and function. Weak association of HSPB5 and HSPB6 with BAG3 has been also reported upon overexpression in cells, supporting the idea that BAG3 might indirectly modulate the function of several HSPBs. However, it is yet unknown whether other HSPBs highly expressed in muscles such as HSPB2 and HSPB3 also bind to BAG3. Here, we report that in mammalian cells, upon overexpression, HSPB2 binds to BAG3 with an affinity weaker than HSPB8. HSPB2 competes with HSPB8 for binding to BAG3. In contrast, HSPB3 negatively regulates HSPB2 association with BAG3. In human myoblasts that express HSPB2, HSPB3, HSPB8, and BAG3, the latter interacts selectively with HSPB8. Combining these data, it supports the interpretation that HSPB8-BAG3 is the preferred interaction

    The influence of Arsenic on the toxicity of carbon nanoparticles in bivalves

    Get PDF
    Although an increasing number of studies have been published on the effects of emergent pollutants such as carbon nanoparticles, there is still scarce information on the impact of these contaminants on marine organisms when acting in combination with classical pollutants such as meta(loid)s. The present study evaluated the impacts of Arsenic and Multi-Walled Carbon Nanotubes (MWCNTs) in the clam Ruditapes philippinarum, assessing the effects induced when both contaminants were acting individually (As, NP) and as a mixture (As+NP). Metabolic capacity (electron transport system activity), oxidative stress (antioxidant and biotransformation enzymes activity and cellular damage) and neurotoxicity (Acetylcholinesterase activity) biomarkers were evaluated inclams aftera28 daysexposure period.Theresults obtained showedthatthe accumulation ofAs was not affected by the presence of the NPs. Our results demonstrated that higher injuries were noticed in clams exposed to NPs, with higher metabolic depression and oxidative stress, regardless of the presence of As. Furthermore, higher neurotoxicity was observed in clams exposed to the combination of both contaminants in comparison to the effects of As and NPs individually.publishe

    HER2-Displaying M13 Bacteriophages induce Therapeutic Immunity against Breast Cancer

    Get PDF
    The advent of trastuzumab has significantly improved the prognosis of HER2-positive (HER2+) breast cancer patients; nevertheless, drug resistance limits its clinical benefit. Anti-HER2 active immunotherapy represents an attractive alternative strategy, but effective immunization needs to overcome the patient's immune tolerance against the self-HER2. Phage display technology, taking advantage of phage intrinsic immunogenicity, permits one to generate effective cancer vaccines able to break immune tolerance to self-antigens. In this study, we demonstrate that both preventive and therapeutic vaccination with M13 bacteriophages, displaying the extracellular (EC) and transmembrane (TM) domains of human HER2 or its Δ16HER2 splice variant on their surface (ECTM and Δ16ECTM phages), delayed mammary tumor onset and reduced tumor growth rate and multiplicity in ∆16HER2 transgenic mice, which are tolerant to human ∆16HER2. This antitumor protection correlated with anti-HER2 antibody production. The molecular mechanisms underlying the anticancer effect of vaccine-elicited anti-HER2 antibodies were analyzed in vitro against BT-474 human breast cancer cells, sensitive or resistant to trastuzumab. Immunoglobulins (IgG) purified from immune sera reduced cell viability mainly by impairing ERK phosphorylation and reactivating retinoblastoma protein function in both trastuzumab-sensitive and -resistant BT-474 cells. In conclusion, we demonstrated that phage-based HER2 vaccines impair mammary cancer onset and progression, opening new perspectives for HER2+ breast cancer treatment

    Long term results of down-staging and liver transplantation for patients with hepatocellular carcinoma beyond the conventional criteria

    Get PDF
    The objective of the study is to evaluate 10 years of down-staging strategy for liver transplantation (LT) with a median follow-up of 5 years. Data on long-term results are poor and less information is available for hepatocellular carcinoma (HCC) non-responder patients or those ineligible for down-staging. The outcome of 308 HCC candidates and the long-term results of 231 LTs for HCC performed between 2003 and 2013 were analyzed. HCCs were divided according to tumor stage and response to therapy: 145 patients were T2 (metering Milan Criteria, MC), 43 were T3 successfully down-staged to T2 (Down-Achieved), 20 were T3 not fully down-staged to T2 (Down-not Achieved), and 23 patients were T3 not receiving down-staging treatments (No-Down). The average treatment effect (ATE) of LT for T3 tumors was estimated using the outcome of 535 T3 patients undergoing non-LT therapies, using inverse probability weighting regression adjustment. The 24-month drop-out rate during waiting time was significantly higher in the down-staging groups: 27.6% vs. 9.2%, p < 0.005. After LT, the tumor recurrence rate was significantly different: MC 7.6%, Down-Achieved 20.9%, Down-not Achieved 31.6%, and No-Down 30.4% (p < 0.001). The survival rates at 5 years were: 63% in Down-Achieved, 62% in Down-not Achieved, 63% in No-Down, and 77% in MC (p = n.s.). The only variable related to a better outcome was the effective down-staging to T2 at the histological evaluation of the explanted liver: recurrence rate = 7.8% vs. 26% (p < 0.001) and 5-year patient survival = 76% vs. 67% (p < 0.05). The ATE estimation showed that the mean survival of T3-LT candidates was significantly better than that of T3 patients ineligible for LT [83.3 vs 39.2 months (+44.6 months); p < 0.001]. Long term outcome of T3 down-staged candidates was poorer than that of MC candidates, particularly for cases not achieving down-staging. However, their survival outcome was significantly better than that achieved with non-transplant therapies

    COVID-19 in an international European liver transplant recipient cohort.

    Get PDF
    Knowledge on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in liver transplant recipients is lacking, particularly in terms of severity of the disease. The aim of this study was to describe the demographic, baseline clinical characteristics and early outcomes of a European cohort of liver transplant recipients with SARS-CoV-2 infection. We conducted an international prospective study across Europe on liver transplant recipients with SARS-CoV-2 infection confirmed by microbiological assay during the first outbreak of COVID-19 pandemic. Baseline characteristics, clinical presentation, management of immunosuppressive therapy and outcomes were collected. 57 patients were included (70% male, median (IQR) age at diagnosis 65 (57-70) years). 21 (37%), 32 (56%) and 21 (37%) patients had one cardiovascular disease, arterial hypertension and diabetes mellitus, respectively. The most common symptoms were fever (79%), cough (55%), dyspnoea (46%), fatigue or myalgia (56%) and GI symptoms (33%). Immunosuppression was reduced in 22 recipients (37%) and discontinued in 4 (7%). With this regard, no impact on outcome was observed. Forty-one (72%) subjects were hospitalised and 11 (19%) developed acute respiratory distress syndrome. Overall, we estimated a case fatality rate of 12% (95% CI 5% to 24%), which increased to 17% (95% CI 7% to 32%) among hospitalised patients. Five out of the seven patients who died had a history of cancer. In this European multicentre prospective study of liver transplant recipients, COVID-19 was associated with an overall and in-hospital fatality rate of 12% (95% CI 5% to 24%) and 17% (95% CI 7% to 32%), respectively. A history of cancer was more frequent in patients with poorer outcome

    FoxO3a Drives the Metabolic Reprogramming in Tamoxifen-Resistant Breast Cancer Cells Restoring Tamoxifen Sensitivity

    Get PDF
    Tamoxifen-resistant breast cancer cells (TamR-BCCs) are characterized by an enhanced metabolic phenotype compared to tamoxifen-sensitive cells. FoxO3a is an important modulator of cell metabolism, and its deregulation has been involved in the acquisition of tamoxifen resistance. Therefore, tetracycline-inducible FoxO3a was overexpressed in TamR-BCCs (TamR/TetOn-AAA), which, together with their control cell line (TamR/TetOn-V), were subjected to seahorse metabolic assays and proteomic analysis. FoxO3a was able to counteract the increased oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) observed in TamR by reducing their energetic activity and glycolytic rate. FoxO3a caused glucose accumulation, very likely by reducing LDH activity and mitigated TamR biosynthetic needs by reducing G6PDH activity and hindering NADPH production via the pentose phosphate pathway (PPP). Proteomic analysis revealed a FoxO3a-dependent marked decrease in the expression of LDH as well as of several enzymes involved in carbohydrate metabolism (e.g., Aldolase A, LDHA and phosphofructokinase) and the analysis of cBioPortal datasets of BC patients evidenced a significant inverse correlation of these proteins and FoxO3a. Interestingly, FoxO3a also increased mitochondrial biogenesis despite reducing mitochondrial functionality by triggering ROS production. Based on these findings, FoxO3a inducing/activating drugs could represent promising tools to be exploited in the management of patients who are refractory to antiestrogen therapy

    An exploratory study on counterfactual thinking in amyotrophic lateral sclerosis

    Get PDF
    ObjectivesThis study aimed at exploring (1) the motor and non-motor correlates of counterfactual thinking (CFT) abilities in non-demented amyotrophic lateral sclerosis (ALS) patients and (2) the ability of CFT measures to discriminate these patients from healthy controls (HCs) and patients with and without cognitive impairment.MethodsN = 110 ALS patients and N = 51 HCs were administered two CFT tasks, whose sum, resulting in a CFT Index (CFTI), was addressed as the outcome. Patients further underwent an in-depth cognitive, behavioral, and motor-functional evaluation. Correlational analyses were run to explore the correlates of the CFTI in patients. Logistic regressions were performed to test whether the CFTI could discriminate patients from HCs.ResultsThe CFTI was selectively associated (p ≤ 0.005) with fluency and memory subscales of the Edinburgh Cognitive and Behavioral ALS Screen (ECAS), but not with other variables. CFTI scores discriminated patients from HCs (p < 0.001) with high accuracy (82%), but not patients with a normal vs. defective performance on the ECAS-Total.ConclusionCFT measures in non-demented ALS patients were associated with verbal fluency and memory functions, and they were also able to discriminate them from HCs
    corecore