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Highlights 

 Arsenic accumulation was not affected by the presence of Multi-Walled 

Carbon Nanotubes (MWCNTs) 

 Higher metabolic depression was induced in clams exposed to MWCNTs, 

regardless of the presence of As.  

 Higher oxidative stress in clams exposed to the MWCNTs, regardless of 

the presence of As.  
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 Higher neurotoxicity was observed in clams exposed to the combination 

of both contaminants  

 

Abstract 

Although an increasing number of studies have been published on the effects of 

emergent pollutants such as carbon nanoparticles, there is still scarce information on the 

impact of these contaminants on marine organisms when acting in combination with 

classical pollutants such as meta(loid)s. The present study evaluated the impacts of 

Arsenic and Multi-Walled Carbon Nanotubes (MWCNTs) in the clam Ruditapes 

philippinarum, assessing the effects induced when both contaminants were acting 

individually (As, NP) and as a mixture (As+NP). Metabolic capacity (electron transport 

system activity), oxidative stress (antioxidant and biotransformation enzymes activity and 

cellular damage) and neurotoxicity (Acetylcholinesterase activity) biomarkers were 

evaluated in clams after a 28 days exposure period. The results obtained showed that 

the accumulation of As was not affected by the presence of the NPs, with As 

concentrations being similar regardless of exposure condition (As, NP or As+NP). Our 

results demonstrated that higher injuries were noticed in clams exposed to NPs, with 

higher metabolic depression and oxidative stress in clams exposed to the MWCNTs, 

regardless of the presence of As. Furthermore, higher neurotoxicity was observed in 

clams exposed to the combination of both contaminants in comparison to the effects of 

As and NPs individually.  

 

Keywords: Mixture of contaminants, metabolism, oxidative stress, neurotoxicity, 

Ruditapes philippinarum, functionalized Multi-walled carbon nanotubes  

 

 

1. INTRODUCTION 
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Coastal zones have always attracted humans, with recent studies indicating that 

population will further growth in these areas (among others, Neumann et al. 2015). This 

will lead to aquatic pollution rise derived from industry, agriculture and urban wastes, 

including mixtures of newly developed and classical pollutants. Metals and polyaromatic 

hydrocarbons are the toxic contaminants most commonly found in the limelight, but a 

vast variety of substances arrives currently the aquatic environment, including newly 

developed chemicals and products (Caputo et al. 2017; Furlong et al. 2017; Naidu et al. 

2016; Petrie et al. 2015; Wilkinson et al. 2017). In particular, aquatic systems such as 

estuaries and coastal lagoons can present mixtures of natural and anthropogenic 

chemicals with wide diversity of origins (Andrady 2017; Chae and An 2017; Patil et al. 

2016; Sajid et al. 2015). Therefore, organisms living in these environments are typically 

exposed to a complex mixture of contaminants that may cause toxic effects, even though 

their concentrations are lower than the No Observable Effect Concentration (NOEC) 

(Raimondo et al. 2007; Kortenkamp 2008; Silva et al. 2002). 

In the aquatic environment metals and metalloids are frequent and persistent 

contaminants (Tchounwou et al. 2012; Jaishankar et al. 2014; Tapase and Kodam 2018). 

Over the years these contaminants have become concentrated on the Earth’s surface 

mainly by mining, smelting and industrial products, reaching aquatic systems worldwide 

(Fashola et al. 2016; Sparks, 2005). Due to their toxicity and persistence, mercury (Hg), 

copper (Cu), lead (Pb), cadmium (Cd) and arsenic (As) are among the most hazardous 

elements present in aquatic ecosystems (ATSDR 2017 Substance Priority List). 

Although adverse effects of such elements have been known for a long time, exposure 

to metals and metalloids still occurs, with known effects on marine invertebrates 

inhabiting coastal areas (Ahmad et al. 2011; Cardoso et al. 2015; Cariou et al. 2017; 

Brahim Errahmani et al. 2014). Regarding As, this metalloid is ranked in the first position 

of the ATSDR (Agency for Toxic Substances and Disease Registry) 2017 Substance 

Priority List, corresponding not only to a list of the most toxic substances but rather to a 

prioritization of substances based on a combination of their frequency, toxicity, and 
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potential for human exposure. Arsenic is widely distributed throughout the environment, 

occurring both naturally and as a result of human activity, in organic and inorganic (the 

most toxic) forms (see for review Sharma and Sohn 2009). In aquatic environments long-

term accumulation of As has been associated with a range of impacts, including 

organisms biochemical alterations (Jang et al. 2016; Neff 1997; Maher and Butler 1988). 

Laboratory studies also demonstrated that As causes injuries to marine organisms, 

including generation of oxidative stress (Ventura-Lima et al. 2011; Coppola et al. 2016; 

Velez et al. 2016a,b). 

Besides metals and metalloids, recent studies have shown the increasing 

presence of a diversity of nanoparticles (NPs) in aquatic ecosystems (Velzeboer 2014; 

Renzi and Guerranti 2015; Jahan et al. 2017). Among these NPs are carbon nanotubes 

(CNTs) are currently identified as one of the most important and commercially used 

nanomaterials, due to their superior electrical and thermal conductivity as well as higher 

mechanical strength over conventional materials (Engheta 2007; De Volder et al. 2013; 

Trojanowicz, 2006). The commercial production and use of CNTs have increased over 

the last years, with a wide variety of industrial applications, including electronic devices, 

composite materials, plastics, paints, batteries, touch screens, and drug delivery. During 

manufacturing, use, or disposal, CNTs are expected to end up in soil, water, or air that, 

due to their non-biodegradability, can result in toxic effects in different organisms (Khalid 

et al. 2016). Nevertheless, the potential toxic impacts of NPs, namely CNTs, to the 

environment has been a topic of concern and the knowledge concerning this issue has 

significantly increased in the last years. Recently, studies with aquatic organisms showed 

that Graphene oxide (GO) induced negative effects on the regenerative capacity, energy-

related responses and oxidative stress of Diopatra neapolitana polychaetes after 28 days 

of exposure (De Marchi et al. 2017a). Additionally, increased energy expenditure and 

toxic impacts at the cellular level (oxidative stress and neurotoxicity) has been observed 

in Ruditapes phylippinarum clams exposed to Multi-Walled Carbon Nanotubes 

(MWCNTs) (De Marchi et al., 2017b). Also, alterations of the histological structure of 
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different tissues (mantle, gills, gut, and the digestive gland) as well as activation pof 

oxidative stress molecular biomarkers have been described in Crenomytilus grayanus 

mussels exposed to MWCNTs (Anisimova et al., 2017).  

However, the current lack of information on the composition of environmental 

mixtures and the limited understanding of the combined effects resulting from exposure 

to chemical mixtures still lack investigation to perceive the risks induced in exposed 

organisms. Previous studies revealed that the coexistence of NPs with copper ion 

enhances the toxicity of this element to daphnids (Fan et al. 2012; Liu et al. 2015). 

Furthermore, information on the impacts of NPs on the bioavailability of other 

contaminants is limited, despite studies showing that TiO2 NPs induced the accumulation 

of As and Cd in the common carp Cyprimus carpio (Sun et al. 2007; Yang et al. 2012). 

Therefore, the present study aimed to investigate the influence of As on the toxicity of 

functionalized Multi-Walled Carbon Nanotubes (f-MWCNTs). For this, Ruditapes 

philippinarum clams were chronically exposed to As, f-MWCNTs and the combination of 

both contaminants, and the As accumulation as well as the biochemical parameters 

associated with clams metabolism, oxidative status and neurotoxicity were evaluated. 
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2. MATERIALS AND METHODS  

2.1 Experimental conditions 

Ruditapes philippinarum specimens with weight (17.4 ± 1.5 g), were collected from 

the Ria de Aveiro lagoon (northwest Atlantic coast of Portugal). In particular, clams were 

collected from the Mira channel, considered as a reference area, with As concentrations 

lower than 10 µg/L in water, and in bivalves tissues at concentrations lower than 2 µg/g 

(wet weight, WW) (Freitas et al. 2012; Freitas et al. 2014; Velez et al. 2015).  

After sampling, clams were maintained in the laboratory for 15 days to depurate 

and acclimate to laboratory conditions. Previous studies developed by Freitas et al. 

(2012) demonstrated the capacity of bivalves to depurate under laboratory conditions, 

by presenting decreased metal(oid)s content. During this period clams were kept in 

artificial seawater (salinity 35 ± 1) (Tropic Marin® SEA SALT from Tropic Marine Center) 

under continuous aeration, temperature 17 ± 1 ºC; pH at 7.9 ± 0.1, and photoperiod at 

12 light: 12 dark. The acclimatization temperature (17 °C) and salinity (35) were chosen 

considering the mean values in September in the sampling area (temperature=16–19 

°C, IPMA, 2016; salinity=34 ± 1, Henriques et al. 2015). Seawater was renewed every 

2-3 times per week and organisms were fed with AlgaMac Protein Plus, Aquafauna Bio-

Marine, Inc (150000 cells/animal). 

After acclimation, organisms were distributed in different aquaria, to test the 

impacts induced by exposures to Arsenic (As), functionalized multi-walled carbon 

nanotubes (f-MWCNTs) and the mixture of both contaminants, testing the following 

conditions: A) CTL, control, with 0 mg/L of As and 0 mg/L of f-MWCNTs; B) As, 0.1 mg/L 

of As and 0 mg/L of f-MWCNTs; C) NP, 0.1 mg/L of f-MWCNTs and 0 mg/L of As; D) 

As+NP, 0.1 mg/L of As and 0.1 mg/L of f-MWCNTs. Sodium arsenate dibasic 

heptahydrate was used to prepare a stock solution of 1000 mg/L. 

Per condition 3 aquaria with 6 L of seawater were used, with 5 organisms per 

replicate.  
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Arsenic was selected for this study considering its wide spatial distribution in 

aquatic systems as well as its relative abundance in the environment, with concentrations 

ranging from 0.5 μg/L to 5 mg/L in water and from 25 mg/kg to 3000 mg/kg in sediments 

(Smedley and Kinniburgh 2002; Velez et al., 2014; Velez et al. 2015; Mandal and Suzuki 

2002; Mamindy-Pajany et al. 2013). Studies conducted in Portugal identified As 

concentrations ranging from 5 to 15 µg/g WW in clams (Velez et al. 2015) and from 2.1 

to 2.4 µg/g WW in cockles (Freitas et al. 2014) from the Ria de Aveiro; while 

concentrations ranging from 2.3 to 21.8 µg/g were observed in clams from the Tagus 

estuary (Chiesa et al. 2017). The concentration used (0.1 mg/L) was based on previous 

studies where similar concentrations revealed toxic effects in bivalves Mytilus 

galloprovincialis, (Coppola et al. 2018). Considering the concentration of 100 µg/L of As 

and the volume of water per aquarium (6 L), as well as the weekly renewal of water 

contaminated during the experiment (4 times), each one of the 5 clams in the aquarium 

would bioaccumulate a maximum of 480 µg of As (100*6*4/5=480). This would lead to a 

concentration of As in clams whole tissue of 28 µg/g (WW), assuming the average weight 

of each clam of approximately 17 g WW. This concentration is higher than concentrations 

observed in clams from the sampling area (Ria the Aveiro), but still ecologically relevant 

considering values of As identified in clams from other aquatic systems such as in the 

Venice lagoon where As concentrations ranged between 40 and 45 µg/g WW (Sfriso et 

al. 2008). 

The f-MWCNTs were selected for this experiment, because of their wide range of 

industrial applications (including display technologies, electronics, nutrition, cosmetics, 

and medical drug designing, (Piccinno et al. 2012; Lawal 2015), and because they 

present high probability to reach the aquatic environments (Nowack and Bucheli 2007). 

Also, functionalized nanoparticles were selected for this study considering their higher 

dispersibility in salt water compared to non-functionalized nanoparticles, which will 

increase the bioavailability to the organisms. The exposure concentration of f-MWCNTs 
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was selected: i) to obtain observable effects considering previous study conducted by 

(De Marchi et al. 2017d) that revealed observable biochemical responses using bivalves 

and the same f-MWCNTs ii) following the predicted environmental concentrations 

(PECs) of CNTs in aqueous systems. Although the environmentally relevant 

concentrations (ERCs) of CNTs in water, based on a stochastic/probabilistic material-

flow computer model, are in the µg/L or ng/L range (Sun et al. 2016), the PECs of CNTs 

in aqueous systems reported from the most recent literature (see for example (Zhang et 

al. 2017; De Marchi et al. 2018)) were projected to approximately 0.001-1000 µg/L. 

During the experiment (28 days) clams were maintained at constant aeration. 

Temperature, pH and salinity were daily checked and maintained at the same conditions 

of the acclimation period.  

Along the exposure period clams were fed with Algamac protein plus (150000 

cells/animal) twice a week, and seawater was renewed weekly, after which the 

experimental conditions were re-established, including As and f-MWCNTs 

concentrations, to ensure the same exposure concentrations during the experiment, as 

well as water salinity, temperature and pH levels. 

After exposure, organisms were individually frozen and manually homogenized 

with a mortar and a pestle under liquid nitrogen. Each homogenized organism was 

divided into 0.5 g aliquots, that were used for biomarkers analyses and As quantification.  

 

2.2 f-MWCNTs characterization  

Commercially available MWCNTs-COOH (f-MWCNTs) were purchased from 

Times Nano: Chengdu Organic Chemicals Co.Ltd., Chinese Academy of Sciences 

(MWCNTs-COOH: TNMC1 series, http://www.timesnano.com) and all the technical data 

of the NMs are specified in Table 1.  

The f-MWCNTs were weighed (stock solution of 50 mg/L), suspended in artificial 

seawater (28 salinity) and sonicated using a ultrasonic processor (UP 400S, Hielscher 
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Ultrasound Technology) for few minutes to promote stable suspension in the water 

column (Hwang et al., 2007) without compromising the physical integrity of the 

nanoparticles (Su et al. 2009). In the present study f-MWCNTs were used directly without 

any chemical processing before use.  

The average size distribution and the polydispersity index (PDI) of f-MWCNT 

suspensions were analysed in each exposure condition (0.10 mg/L f-MWCNTs; 0.10 

mg/L f-MWCNTs+0.10 mg/L As) and at different exposure periods: t0: time zero, 

immediately after the dispersion of f-MWCNTs in a water medium; t7: water samples 

collected after the first week of exposure before water renewal; t14: water samples 

collected after the second week of exposure before water renewal; t28I: samples 

collected at the start of the fourth week of exposure and t28F: samples collected at the 

end of the fourth week of exposure (Table 2). As reported in the literature DLS 

measurements have been routinely carried out as an effective tool to observe the 

evolution of relative particle size distributions of CNTs in aqueous media as a function of 

time (Moon et al. 2009; Wang et al. 2010; Xu et al., 2011). In the present work, Dynamic 

Light Scattering (DLS) measurements were carried out by using a Delsa Nano C from 

Beckman Coulter, Inc. (Fullerton, CA) equipped with a laser diode operating at 658 nm. 

Scattered light was detected at 165° angle and analysed by using a log correlator over 

120 accumulations for a 1.0 mL of sample in a UV cuvette semi-micro. Each sample was 

reproducibly shaken before analysis and exposed to a minimum of DLS measurements 

needed to obtain at least three valid data. The calculation of the particle size distribution 

and distribution averages was performed by using CONTIN particle size distribution 

analysis routines through Delsa Nano 3.73 software. The hydrodynamic radius and 

polydispersity index of the analysed dispersions were calculated on three replicates of 

each sample by using the cumulant method. Undetected colloidal material at the end of 

each measurement is indicated as Invalid data (I.d.).  
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The mean size (nm) and the polydispersity index (PDI) of functionalized MWCNTs-

COOH particle aggregates (f-MWCNTs, 0.1 mg/L) and functionalized MWCNTs-COOH 

particle aggregates (f-MWCNTs, 0.1 mg/L) + As (0.1 mg/L) in simulated seawater 

(salinity 28) were measured by dynamic light scattering (DLS) (Table 2). Each condition 

was tested both in absence (sample CTRL 1 and 2) and in presence (samples A, B, C) 

of Ruditapes philippinarum individuals. DLS characterization was used to detect the 

presence of macro/micro/nano-sized particle aggregates in aqueous media under the 

adopted experimental conditions. DLS analyses were repeated several times due to the 

inherent heterogeneity and colloidal instability of the analysed samples. The mean size 

of the suspended particle aggregates was determined by applying the cumulant method 

which is particularly recommended for the analysis of polydisperse colloidal systems.  

 

2.3 Arsenic quantification in clams 

Total As concentration in clams whole soft tissue was quantified by Inductively 

Coupled Plasma Mass Spectroscopy (ICP-MS), performed on a Thermo ICP-MS 

XSeries equipped with a Burgener nebulizer, as described by Henriques et al. (2017).  

The aliquots of 0.3 g WW of previously homogenized tissue (3 organisms per 

condition) and freeze-dried were digested with 4 mL of nitric acid (HNO3 65%) at 60ºC 

for 18 h. After that, 2 mL of hydrogen peroxide (H2O2 37%) were added and left sit for 1 

h at 80ºC. At the end of this time the mixture was evaporated almost to dryness, 0.4 mL 

of HNO3 65% added and left sit for 15 min. The solution was collected into 10 mL of 

ultrapure water.  

 The limit of quantification of the method was 0.34 μg/g WW (1.1 μg/g DW), with 

an acceptable coefficient of variation among replicates of 5%. The quality control was 

assured by running procedural blanks (reaction vessels with only HNO3 and H2O2) and 

certified reference material TORT-2 (Lobster Hepatopancreas; 21.6±1.8 mg As kg−1) in 

parallel with samples. Blanks were always below the quantification limit and mean 

percentage of recovery for As was 110±4% (n = 4). 
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2.4 Biochemical parameters 

After 28 days exposure, tissue aliquots used for biomarker analysis (2 per 

aquarium, 6 per condition) were extracted with specific buffers for each biomarker 

(Almeida et al. 2014; Freitas et al. 2017a,b; Andrade et al. 2018). Biochemical analyses 

were performed in duplicate for each sample and biomarker with a BioTek Synergy HT 

micro-plate Reader.  

 

2.4.1 Metabolic capacity and energy reserves 

The electron transport system (ETS) activity was measured following King and 

Packard (1975) and De Coen and Janssen (1997) methods. The absorbance was 

measured at 490 nm during 10 min with intervals of 25 s. ETS activity was expressed in 

nmol/min per g WW. 

Protein (PROT) content was determined following the spectrophotometric method 

of Biuret (Robinson and Hogden 1940) whit bovine serum albumin (BSA) as standard 

(0-40 mg/mL). Absorbance was measured at 540 nm. PROT was expressed in mg per 

g WW. 

Glycogen (GLY) content was quantified following the sulphuric acid method 

(Dubois et al. 1956), using glucose standards (0-2 mg/mL). Absorbance was measured 

at 540 nm and GLY expressed in mg per g WW. 

 

2.4.2 Antioxidant and biotransformation defences 

The activity of SOD was determined using the method described in Beauchamp 

and Fridovich (1971) and adaptations performed by Carregosa et al. (2014). The 

standard curve was determined using SOD standards (0.0001-60 U mL-1). Absorbance 

was measured at 560 nm. The enzymatic activity was expressed in U per g WW, where 

U corresponds to a reduction of 50% of nitroblue tetrazolium (NBT). 
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The activity of CAT was quantified according to Johansson and Borg (1988) and 

the modifications performed by Carregosa et al. (2014). The standard curve was 

determined using formaldehyde standards (0-150 µM). The absorbance was measured 

at 540 nm. The enzymatic activity was expressed in U per g WW, where U represents 

the amount of enzyme that caused the formation of 1.0 nmol formaldehyde. 

The activity of GPx was quantified following Paglia and Valentine (1967). The 

absorbance was measured at 340 nm in 10 s intervals during 5 min and the enzymatic 

activity was determined using ε=6.22 mM-1cm−1 and. The results were expressed as U 

per g WW, where U represent the number of enzymes that caused the formation of 1.0 

µmol NADPH oxidized per min. 

The activity GSTs was determined according to Habig et al. (1976). The 

absorbance was measured at 340 nm and the activity of GSTs was determined using 

the extinction coefficient 9.6 mM cm-1 for CDNB. Results were expressed in U per g of 

WW where U is defined as the amount of enzyme that catalysis the formation of 1 µmol 

of dinitrophenyl thioether per min. 

 

2.4.3 Indicators of cellular damage  

Lipid peroxidation (LPO) was measured according to Ohkawa et al. (1979) and 

modifications referred by Carregosa et al. (2014). The absorbance was measured at 535 

nm and LPO levels were determined using ε = 156 mM−1 cm−1. LPO levels were 

expressed in nmol of MDA equivalents formed per g WW. 

 

2.4.4 Neurotoxicity 

Acetylthiocholine iodide (ATChI, 470 µM) substrates were used for the 

determination of Acetylcholinesterase (AChE) activity, following the methods of Ellman 

et al. (1961) and modification by Mennillo et al. (2017). Enzyme activities were recorded 

continuously for 5 min at 412 nm and expressed in nmol per min per g WW. 
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2.5 Data analysis  

All the biochemical results (ETS, PROT, GLY, CAT, GPx, GSTs, LPO, and ATChI-

ChE) were submitted to hypothesis testing using permutational multivariate analysis of 

variance with the PERMANOVA+ add-on using PRIMER v6 software. The pseudo-F p-

values in the PERMANOVA main tests were evaluated in terms of significance. When 

significant differences were observed in the main test, pairwise comparisons were 

performed. Values lower than 0.05 were considered as significantly different.  

The null hypothesis tested was: i) for each biomarker response, no significant 

differences existed among exposure conditions (CTL, As, NP, As+NP). Significant 

differences concerning each biomarker among exposure conditions were represented 

with different letters.  

 

 

3. RESULTS 

3.1 f-MWCNTs characterization  

The comparison of the results on MWCNTs characterization did not evidence a 

correlation of the mean radius of the suspended particles with the time of sample 

collection, the presence of arsenic or R. philippinarum organisms. To better evaluate the 

differences among the tested conditions, the mean values calculated for the controls 

(CTRL 1 and 2) and the R. philippinarum containing samples (A, B, C) were compared, 

but no consistent differences were evidenced due to the large variability of the calculated 

standard deviations. The randomly distributed hydrodynamic radius values recorded 

during the analysis, which did not depend on the different tested conditions, could be 

attributed to the constant presence of a white particulate material dispersed in the 

analysed samples which negatively interfered with f-MWCNTs aggregates 

determination.  
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3.2 Arsenic concentrations in clams 

Arsenic concentration was higher in clams exposed to this metalloid (As and 

As+NP conditions, 25.5±6.4 µg/g dry weight, DW) in comparison to values recorded in 

clams exposed to control (16.8±2.5 µg/g DW) and NP (17.8±5.3 µg/g DW), but no 

statistically significant differences were observed among tested conditions.  

 

3.3 Biochemical parameters 

3.3.1 Metabolic capacity and energy reserves 

In comparison to control (CTL), the ETS activity was significantly higher in clams 

exposed to As while significantly lower in clams exposed to f-MWCNTs (NP) and the 

combination of both contaminants (As+NP) (Figure 1A).  

The GLY content was significantly higher in contaminated clams compared to non-

contaminated ones (CTL) (Figure 1B). The highest values were observed in clams 

exposed to f-MWCNTs and the combination of both contaminants (As+NP), with no 

significant differences between clams exposed to both conditions (Figure 1B).  

The PROT content was significantly higher in contaminated clams compared to 

non-contaminated ones (CTL) (Figure 1C). Significantly higher values were observed in 

clams exposed to f-MWCNTs in comparison to organisms exposed to As and the 

combination of both contaminants (As+NP) (Figure 1C). 

 

3.3.2 Antioxidant and biotransformation defences 

The activity of SOD was significantly higher in contaminated clams compared to 

control condition (CTL), with no significant differences among clams exposed to As, NP 

and As+NP conditions (Figure 2A). 

The activity of CAT was significantly higher in contaminated clams in comparison 

to control organisms (Figure 2B). The highest CAT activity was observed in clams 
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exposed to As compared to clams exposed to NP and As+NP conditions (Figure 2B). No 

significant differences were observed between clams exposed to NP and As+NP (Figure 

2B). 

The activity of GPx was significantly higher in contaminated clams compared to 

control organisms (CTL), with no significant differences among clams exposed to As, NP 

and As+NP conditions (Figure 2C). 

The activity of GSTs was significantly higher in clams exposed to As in comparison 

to values observed in clams exposed to the remaining conditions (CTL, NP, As+NP) 

(Figure 2D). No significant differences in GSTs activity was observed among clams 

exposed to CTL, NP and As+NP (Figure 2D). 

 

3.3.3 Indicators of cellular damage  

LPO levels were significantly higher in contaminated clams compared to control 

organisms (CTL), with significant differences between clams exposed to As and clams 

exposed to NP and As+NP conditions (Figure 3). 

 

3.3.4 Neurotoxicity 

The activity of AChE was significantly lower in contaminated clams compared to 

control organisms (Figure 4). The lowest enzyme activity was observed in clams 

exposed to As+NP, with significant differences among As, NP and As+NP conditions 

(Figure 4). 

 

 

4. DISCUSSION 

The capacity of NPs, in particular carbon nanotubes (CNTs), to interact with other 

pollutants and influence their bioavailability and toxicity is still largely unclear. These 

interactions were investigated in the present study. 
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The capacity of adsorption of both organic and inorganic toxicants by various NPs 

was evaluated and summarized by several authors (e.g., Rao et al. 2007; Pan and Xing 

2008). Regarding metals, previous studies identified the ‘Trojan horse’ effect consisting 

of NPs capacity to adsorb these pollutants and thus enabling for their uptake by 

organisms, which may increase their toxic impacts (Fan et al. 2011; 2012). Studies have 

demonstrated that CNTs have a great affinity for contaminants, including metals (Deng 

et al. 2017). In fact, their external surfaces, interstitial pore spaces, inner cavities, and 

peripheral grooves are four possible adsorption sites. Most of these sites are accessible 

and allow the adsorption and desorption of contaminants and the bioaccumulated CNTs-

contaminant complexes can release the contaminant and thereby cause toxicity as 

demonstrated by Wang et al. (2015) where in the snail Bellamya aeruginosa, MWCNTs 

enhanced the oxidative damage of Cd2+..However, our findings showed that As 

accumulation in Ruditapes philippinarum was not affected by the presence of f-

MWCNTs, with organisms revealing similar As concentrations both when exposed to As 

or the combination of As and f-MWCNTs. Therefore, our findings may highlight that 

impacts on the bioavailability and accumulation of contaminants are contaminant mixture 

and species specific, indicating that in the case of As the accumulation of this metalloid 

is not facilitated by the presence of CNTs in R. philippinarum. 

 

Regarding organisms’ biochemical performance, previous studies (Berridge et al. 

2005; Fanslow et al 2001; García-Martín et al. 2014) demonstrated that the ETS activity 

can be used as a measure of metabolic capacity since it represents a proxy of the cellular 

respiratory potential of a given organism. The ETS activity assay was already used to 

assess aerobic potential in invertebrates, including the mussel Dreissena polymorpha 

(Madon et al. 1998). Considering this information, the present findings indicate that 

clams’ metabolism was reduced in NP exposures (NP and As+NP), as clams presented 

lower ETS activity under these conditions compared to clams exposed to As. Therefore, 
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by reducing metabolic capacity (lower filtration rates associated to valves closure), clams 

exposed to As+NP may have limited the accumulation of As and the Trojan Horse effect, 

resulting in similar As accumulation patterns observed in clams exposed to As and to 

As+NP. Among others Ortmann and Grieshaber (2003) demonstrated that the bivalve 

Corbicula fluminea presented a pronounced metabolic depression during valve closure, 

supporting the hypothesis that clams exposed to As+NP may have limited the 

accumulation of As by lowering their ETS activity.  

Our findings further highlighted that higher reduction of ETS activity in clams 

exposed to NP and As+NP in comparison to clams exposed to As, resulted in lower 

energy expenditure under these conditions (NPs and As+NPs), with higher PROT and 

especially GLY content in calms exposed to NPs in comparison to As. The capacity of 

clams to limit the expenditure of energy reserves by reducing their metabolic capacity 

under stressful conditions was demonstrated in previous studies with bivalves, namely 

exposed to metals (Coppola et al. 2017; Freitas et al. 2017a; Coppola et al. 2018) and 

CNTs (De Marchi et al. 2017d). Nevertheless, the expenditure of energy reserves may 

depend on the stress level, that depends on contaminant type and concentration as well 

as on species physiological and biochemical performance. Our results may indicate that 

clams are more prone to saving their energy reserves when exposed to NPs in 

comparison to As, which is associated to clams capacity to reduce their metabolism 

(identified by lower ETS activity) when exposed to NPs. Nevertheless, to the best of our 

knowledge no information is available on the energy related markers in bivalves exposed 

to a mixture of NP with metals or metalloids.  

 

Under different stressful conditions, organisms may be able to reduce their 

metabolism up to a certain extent to prevent higher injuries namely by limiting the 

accumulation of pollutants, which is not only dependent on species but also on the 

contaminant. Nonetheless, in most cases, metabolism reduction is not sufficient to 

prevent organisms from injuries and an overproduction of reactive oxygen species is 
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observed (Regoli and Giuliani 2014). In these cases, organisms activate defense 

mechanisms by increasing the activity of antioxidant enzymes such as superoxide-

dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx). In the present 

study, antioxidant enzymes activity increased in contaminated organisms compared to 

non-contaminated ones, regardless of the contaminant (As or NP). Furthermore, our 

study also revealed that the combination of both contaminants (As+NP) induced similar 

antioxidant defenses in clams compared to the responses observed in the organisms 

exposed to each contaminant individually. Our findings demonstrated that clams were 

able to activate their antioxidant enzymes to eliminate the excess of ROS due to the 

contaminants and that the exposure to As, NP or the combination of both contaminants 

may have induced the same antioxidant defense capacity, indicating that the 

combination of contaminants did not have an additive effect on enzymes activity. Also, 

although clams presented reduced metabolism in the presence of f-MWCNTs our results 

indicated that this decrease was not enough to limit the capacity of clams to activate their 

defense mechanisms when exposed to this NP. In accordance to our results, previous 

studies showed that metals and NPs induced the activation of antioxidant enzymes in 

bivalves (Cid et al. 2015; Velez et al. 2016a,b; Gomes et al. 2012; Pan et al. 2012; Barmo 

et al. 2013; Volland et al. 2015; Canesi and Corsi 2015) to prevent higher oxidative levels 

but to our knowledge no information is available on the effects of the combined exposure 

to As and MWCNTs. However, similar antioxidant enzymes activity in clams exposed to 

NPs (NP and As+NP) and As do not necessarily indicate similar stress levels induced by 

these contaminants, but could be related to the capacity of clams exposed to NPs (NP 

and As+NP) to reduce ROS production by decreasing ETS activity. The reduction of the 

metabolic activity in clams exposed to NP (NP and As+NP) may indicate that f-MWCNTs 

have the capacity to diminish the activity of electron transport system in this species and 

therefore less ROS were generated. Studies have shown that the mitochondrial electron 

system activity is one of the major cellular generators of ROS (Loschen et al. 1971; 

Boveris et al. 1972; Chance et al. 1979). Therefore, our results may suggest that the 
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capacity of clams to reduce their ETS activity when exposed to NPs (NPs and As+NPs) 

could have contributed to the reduction of ROS production leading to an overall ROS 

level similar to the one resulting from As exposure and thus limiting the increase of 

antioxidant defenses. 

 

Regarding biotransformation defense mechanisms, the present findings clearly 

demonstrated clams’ capacity to increase the activity of GSTs when exposed to As but 

not in the presence of f-MWCNTs, indicating that this group of enzymes was not involved 

in the biotransformation of these NPs into less toxic excreted substances. Previous 

studies revealed that GSTs are activated by the presence of As in bivalves including 

clams (Velez et al. 2016a; Freitas et al. 2016) and mussels (Coppola et al. 2018; 

Jaishankar et al. 2014; Orescanin et al. 2006). Nevertheless, Cid et al. (2015) exposed 

Corbicula fluminea clams to carbon nanodiamonds (NDs) throughout 14 days, and 

revealed an increase of GSTs activity with increasing NDs concentration, while De 

Marchi et al. (2017d) showed that clams exposed to f-MWCNTs presented lower GSTs 

activity compared to non-contaminated organisms. These findings may suggest that the 

behavior of GSTs is dependent on the type and concentration of the NPs. Furthermore, 

the present results showed that the combination of both contaminants (As+NP) did not 

induce the activity of GSTs which may indicate that MWCNTs could have inhibited their 

action when combined with As since clams exposed to As+NP showed no increase on 

these enzymes activity in comparison to As acting alone. Because clams exposed to NP 

and As+NP presented GSTs values similar to control values this may also indicate that 

NPs were not able to activate GSTs when acting alone and As interacted with f-MWCNTs 

when in combination with this NP, making this metalloid unavailable and therefore not 

sufficiently toxic to clams to activate GSTs detoxification defense mechanisms. 

Anisimova et al. (2015) observed a decrease of GSTs activity in Crenomytilus grayanus 

mussels after 48h exposure to 12-14 nm diameter of MWCNTs. 
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In the present study clams showed the highest cellular damages (measured by 

LPO levels) when exposed to the combination of both contaminants (As+NP), followed 

by clams exposed to NP and As, a result that is in agreement with antioxidant and 

biotransformation responses. In particular, the lowest LPO levels observed in clams 

exposed to As could be related to the highest GSTs, GPx and CAT activity recorded at 

this condition. On the other hand, higher LPO levels observed in clams exposed to NP 

and the combination of both contaminants (As+NP) was associated to the inefficiency of 

defense mechanisms in clams under these conditions that were not able to activate 

efficiently their defense mechanisms. Studies with As demonstrated the capacity of this 

contaminants to induced cellular damages in calms (Velez et al. 2016a,b; Freitas et al. 

2016; Moreira et al. 2016; Moreira et al. 2018). Also studies with MWCNTs showed that 

these NPs induced high LPO levels in the clams R. philippianrum exposed to MWCNTs 

for 28 days (De Marchi et al. 2017d) and a similar response was observed by Anisimova 

et al. (2015) in C. grayanus exposed to MWCNTs for 48h. Nevertheless, up to our 

knowledge no information is available on the effects due the combination of MWCNTs 

with metals or metalloids.  

 

Besides oxidative stress, neurotoxicity may occur in bivalves exposed to pollutants. 

To evaluate the neurotoxic impacts due to pollutants exposure the inhibition of 

cholinesterase in aquatic invertebrates has been used as a sensitive biomarker of 

exposure to NPs and metals (Jebali et al. 2013; Gomes et al. 2011; Buffet et al. 2014; 

Marisa et al. 2016; Luis et al. 2016; De Marchi et al. 2017b,c,d). The results here 

presented demonstrated that higher neurotoxic effects were observed in clams exposed 

to NP, clearly indicating the higher capacity of f-MWCNTs to produce neurotoxicity in 

clams in comparison to As. These findings are in agreement with the number of the 

studies which investigated the interactions between cholinesterases and NMs, 

demonstrating an inhibition of cholinesterase activity in invertebrates as a consequence 

ACCEPTED M
ANUSCRIP

T



21 
 

of NPs exposure (Gomes et al. 2011; Buffet et al. 2014; Marisa et al. 2016; Luis et al. 

2016; De Marchi et al. 2017b,c,d). 

 

5. CONCLUSION 

Our findings showed that similar As concentrations were observed in clams 

exposed to As and As+NP, indicating that MWCNTs did not promote higher 

accumulation of this metalloid in R. philippinarum specimens. 

The present study clearly revealed that in terms of metabolic capacity, energy 

reserves and oxidative stress f-MWCNTs induced higher toxicity in clams in comparison 

to As, and the combination of both contaminants (As+NP) revealed no additive or 

synergetic effects in comparison to NP acting alone. The presence of f-MWCNTs (NP 

and As+NP conditions) induced metabolic depression in clams, avoiding energy 

reserves expenditure, despite antioxidant defenses activation. However, although the 

antioxidant capacity increased in clams exposed to f-MWCNTs, the activity of antioxidant 

enzymes was not able to eliminate the excess of ROS produced by clams contaminated 

with NPs and cellular damages occurred, which may also be related to the inefficient 

detoxification capacity of GSTs under these conditions. 

Neurotoxicity was also observed in clams exposed both contaminants but 

especially to the mixture of As and NP, evidencing that the combination of these 

contaminants could result in greater neurotoxic damages to clams. These findings clearly 

reveal synergetic effects of As and MWCNTs in terms of neurotoxicity.  
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Figure 1. A: electron transport system (ETS) activity; B: Glycogen (GLY); C: Protein 

(PROT) content (mean + standard deviation) in Ruditapes philippinarum exposed to 

control (CTL), Arsenic (As) (0.1 mg/L), functionalized multi-walled carbon nanotubes 

(NP) (0.1 mg/L) and the combination of both contaminants (As+NP). Significant 

differences (p ≤ 0.05) among exposure conditions were represented with different letters.  
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Figure 2. A: Superoxide dismutase (SOD) activity; B: Catalase (CAT) activity; C: 

Glutathione peroxidase (GPx) activity; D: Glutathione S-transferases (GSTs) activity 

(mean + standard deviation), in Ruditapes philippinarum exposed to control (CTL),  

Arsenic (As) (0.1 mg/L), functionalized multi-walled carbon nanotubes (NP) (0.1 mg/L) 

and the combination of both contaminants (As+NP). Significant differences (p ≤ 0.05) 

among exposure conditions were represented with different letters.  
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Figure 3. Lipid peroxidation (LPO) level (mean + standard deviation), in Ruditapes 

philippinarum exposed to control (CTL), Arsenic (As) (0.1 mg/L), functionalized multi-

walled carbon nanotubes (NP) (0.1 mg/L) and the combination of both contaminants 

(As+NP). Significant differences (p ≤ 0.05) among exposure conditions were represented 

with different letters. 

 

Figure 4. Acetylcholinesterase (ATChI-ChE) activity (mean + standard deviation), in 

Ruditapes philippinarum exposed to control (CTL), Arsenic (As) (0.1 mg/L), 

functionalized multi-walled carbon nanotubes (NP) (0.1 mg/L) and the combination of 

both contaminants (As+NP). Significant differences (p ≤ 0.05) among exposure 

conditions were represented with different letters. 
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Table 1. Characterization of the powder form of and MWCNTs-COOH (f-MWCNTs) provided 

by Times Nano: Chengdu Organic Chemicals Co.Ltd., Chinese Academy of Sciences (MWCNTs-

COOH: TNMC1 series, http://www.timesnano.com). 

 MWCNTs-COOH  

OD (Outer Diameter (nm)) < 8 

ID (Inner Diameter (nm)) 2-5 

Length (um) 10-30 

Carbon Purity (%) 98 

Amorphous Carbon (mol%) 8-10 

-COOH content (wt%) 3.86 

SSA (Special Surface Area (m2/g)) 400 

Tap density (g/cm3) 0.27 

True density (g/cm3) ~ 2.1 

EC (Electric Conductivity (s/cm)) > 100 

 

 

 

 

  

ACCEPTED M
ANUSCRIP

T



44 
 

Table 2.  Dynamic light scattering (DLS) data of mean size (nm) and standard deviation values 

(nm) of samples exposed to medium (0.10 mg/L MWCNTs-COOH and MWCNTs-COOH (0.10 

mg/L) + As (0.10 mg/L)) either in absence (CTRL 1, 2) or in presence (A, B, C) of Ruditapes 

Philippinarum individuals collected in different exposure periods (t0; t7; t14; t28 beginning of 

the week (t28I); t28 end of the week (t28F)). 

 

MWCNTs-COOH (0.10 mg/L) 

  t0 

Samples Mean Size 

(nm) 

Standard 

deviation 

(nm) 

CTRL1,2 1830.0 927.5 

A,B,C 2406.8 1045.1 

t7 

Samples Size (nm) Standard 

deviation 

(nm) 

CTRL1,2 3410.9 108.7 

A,B,C 2072.2 138.3 

t14 

Samples Size (nm) Standard 

deviation 

(nm) 

CTRL1,2 4030.8 1977.3 

A,B,C 2918.2 884.2 

t28I 

Samples Size (nm) Standard 

deviation 

(nm) 

CTRL1,2 3600.7 850.1 

A,B,C 3172.6 868.7 

t28F 

Samples Size (nm) Standard 

deviation 

(nm) 

CTRL1,2 3655.5 467.0 
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A,B,C 2629.2 382.9 

MWCNTs-COOH (0.10 mg/L) + As (0.10 mg/L) 

  t0 

Samples Mean Size 

(nm) 

Standard 

deviation 

(nm) 

CTRL1,2 2121.3 1569.2 

A,B,C 2454.6 1164.4 

t7 

Samples Size (nm) Standard 

deviation 

(nm) 

CTRL1,2 3790.2 48.0 

A,B,C 2358.3 159.1 

t14 

Samples Size (nm) Standard 

deviation 

(nm) 

CTRL1,2 3855.0 1414.4 

A,B,C 3798.3 226.7 

t28I 

Samples Size (nm) Standard 

deviation 

(nm) 

CTRL1,2 3206.8 242.5 

A,B,C 3055.9 820.3 

t28F 

Samples Size (nm) PDI 

CTRL1,2 2550.4 239.6 

A,B,C 4409.7 1517.0 
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