25 research outputs found

    Access of energetic particles to Titan's exobase: a study of Cassini's T9 flyby

    Get PDF
    We study how the local electromagnetic disturbances introduced by Titan affect the ionization rates of the atmosphere. For this, we model the precipitation of energetic particles, specifically hydrogen and oxygen ions with energies between 1 keV and 1 MeV, into Titan's exobase for the specific magnetospheric configuration of the T9 flyby. For the study, a particle tracing software package is used which consists of an integration of the single particle Lorentz force equation using a 4th order Runge-Kutta numerical method. For the electromagnetic disturbances, the output of the A.I.K.E.F. hybrid code (kinetic ions, fluid electrons) is used, allowing the possibility of analyzing the disturbances and asymmetries in the access of energetic particles originated by their large gyroradii. By combining these methods, 2D maps showing the access of each set of particles were produced. We show that the access of different particles is largely dominated by their gyroradii, with the complexity of the maps increasing with decreasing gyroradius, due to the larger effect that local disturbances introduced by the presence of the moon have in the trajectory of the particles with lower energies. We also show that for particles with gyroradii much larger than the moon's radius, simpler descriptions of the electromagnetic environment can reproduce similar results to those obtained when using the full hybrid simulation description, with simple north-south fields being sufficient to reproduce the hybrid code results for O+ ions with energies larger than 10 keV but not enough to reproduce those for H+H+ ions at any of the energies covered in the present study. Finally, by combining the maps created with upstream plasma flow measurements by the MIMI/CHEMS instrument, we are able to estimate normalized fluxes arriving at different selected positions of the moon's exobase. We then use these fluxes to calculate energy deposition and non-dissociative N2 ionization rates for precipitating O+O+ and H+H+ ions and find differences in the ion production rates of up to almost 80% at the selected positions. All these results combined show that the electromagnetic field disturbances present in the vicinity of Titan significantly affect the contribution of energetic ions to local ionization profiles

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Plutonium(VI) complexation by diglycolamide ligands coordination chemistry insight into TODGA-based actinide separations

    Get PDF
    Complexation of Pu(IV) with TMDGA, TEDGA, and TODGA diglycolamide ligands was followed by vis-NIR spectroscopy. A crystal structure determination reveals that TMDGA forms a 1 : 3 homoleptic Pu(IV) complex with the nitrate anions forced into the outer coordination sphere

    Far plasma wake of Titan from the RPWS observations: A case study.

    Get PDF
    The Titan's plasma wake has been investigated using observations from the Radio and Plasma Wave Science (RPWS) instrument onboard the Cassini spacecraft during one Titan flyby on December 26, 2005. The Langmuir Probe and the wideband receiver suggest a strong asymmetry of the plasma wake, which is displaced from the ideal wake. Two distinct structures are identified inbound and outbound of the flyby with significantly different electron number densities (ne). The maximum electron number density reached 14 cm−3 on the Saturn side, connected to the sunlit ionosphere, while on the opposite side of Saturn observations indicate a density smaller than 2 cm−3. Other derived parameters of the Langmuir probe analysis suggest also a difference in plasma composition between the two structures, where heavy and light ions dominate the Saturn and anti-Saturn side respectively. The total ion outflow is estimated at 2–7 × 1025 ions/s assuming a cylindrical geometry for the plasma wake

    The electron density of Saturn's magnetosphere

    No full text
    International audienceWe have investigated statistically the electron density below 5 cm−3 in the magnetosphere of Saturn (7–80 RS, Saturn radii) using 44 orbits of the floating potential data from the RPWS Langmuir probe (LP) onboard Cassini. The density distribution shows a clear dependence on the distance from the Saturnian rotation axis (√X2+Y2) as well as on the distance from the equatorial plane (|Z|), indicating a disc-like structure. From the characteristics of the density distribution, we have identified three regions: the extension of the plasma disc, the magnetodisc region, and the lobe regions. The plasma disc region is at LS. The magnetodisc is located beyond L=15, and its density has a large variability. The variability has quasi-periodic characteristics with a periodicity corresponding to the planetary rotation. For Z>15 RS, the magnetospheric density distribution becomes constant in Z. However, the density still varies quasi-periodically with the planetary rotation also in this region. In fact, the quasi-periodic variation has been observed all over the magnetosphere beyond L=15. The region above Z=15 RS is identified as the lobe region. We also found that the magnetosphere can occasionally move latitudinally under the control of the density in the magnetosphere and the solar wind. From the empirical distributions of the electron densities obtained in this study, we have constructed an electron density model of the Saturnian nightside magnetosphere beyond 7 RS. The obtained model can well reproduce the observed density distribution, and can thus be useful for magnetospheric modelling studies
    corecore