3,680 research outputs found

    Use of indigenous knowledge in the management of field and storage pests around Lake Victoria basin in Tanzania

    Get PDF
    Agriculture in Lake Victoria basin (LVB) in Tanzania is predominantly subsistence and is characterised by perennial food deficits, cyclic famines and poverty prompted largely by unreliable rainfall patterns, declining soil fertility and food grains pests and diseases. The pest problem is more pronounced as farmers are yet to fully integrate synthetic pesticides into their insect pest management systems due to subsistence nature of production and high poverty levels that make them rely on indigenous knowledge (IK) systems to meet their needs. The survey was conducted to document farmers’ IK on management of key field and storage insect pests in Magu and Misungwi districts in the LVB, Tanzania. Major crops grown were maize, rice, sorghum, finger millet, bean, groundnut, cowpea, green gram, brassicas, chicken pea, cassava, sweet potato, cotton and vegetables. Crops were mainly infested by Busseola fusca (Lepidoptera: Noctuidae), Spodoptera spp (Lepidoptera: Noctuidae), Agrotis spp (Lepidoptera: Noctuidae), Maruca vitrata (Lepidoptera: Crambidae), Rhopalosiphum maidis (Homoptera: Aphididae), Aphis fabae (Hemiptera: Aphididae), and grasshoppers in field and Stophilus spp (Coleoptera: Curculionidae), Prostephanus truncates (Coleoptera: Bostrichidae), Tribolium spp (Coleoptera: Tenebrionidae), Bruchus rufimanus (Coleoptera; Bruchidae), Rhyzopertha dominica (Coleoptera: Bostrichidae) and rodents on storage. IK based control methods used by farmers ranged from animal by-products (cow’s urine and dung), plant parts (Azadirachta indica (Meliaceae),Tephrosia vogelii (Fabaceae), Tamarindus indica (Fabaceae), Aloe spp (Asphodelaceae), red pepper, Capsicum spp (Solanaceae), Nicotiana tabasum (Solanaceae) to ash (general and specific) in the field. They also used neem, Chenopodium opulifolium (Chenopodiaceae), Ocimum suave (Labiatae), Senna siamea (Fabaceae or Caesalpinioideae), tobacco and Eucalyptus spp (Myrtaceae) and plant by-products (rice husks, ash from rice husks and red maize cobs and general ash) to control storage pests. Most of these products were used together with one or two others in different formulation mixtures. However, the formulations had variable amount taken during preparation, crop/ crop product treated, preparation times, modes and rates of application. Research is needed to unveil the amount for mixing, appropriate treatment, and application rate to ensure optimum concentration for specific pest. To ensure quality and safety, biosafety and quality studies are required for quality assessment of resulting product for human health. For understanding of active compounds in the formulations, chemical composition analysis of properly prepared solutions is required. Key words: Field and storage pests, indigenous knowledge, Tanzania, botanical formulation, Lake Victoria basin

    Heat Diffusion-Induced Gradient Energy Level in Multishell Bisulfides for Highly Efficient Photocatalytic Hydrogen Production

    Get PDF
    © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Insufficient light absorption and low carrier separation/transfer efficiency constitute two key issues that hinder the development of efficient photocatalytic hydrogen production. Here, multishell ZnS/CoS2 bisulfide microspheres with gradient distribution of Zn based on the heat diffusion theory are designed. The Zn distribution can be adjusted by regulating the heating rate and manipulating the diffusion coefficients of the different elements conforming the multishell photocatalyst. Because of the unique structure, a gradient energy level is created from the core to the exterior of the multishell microspheres, which effectively facilitates the exciton separation and electron transfer. In addition, stronger light absorption and larger specific surface area have been achieved in the multishell ZnS/CoS2 photocatalysts. As a result, the multishell ZnS/CoS2 microspheres with gradient distribution of Zn exhibit a remarkable hydrogen production rate of 8001 µmol g−1 h−1, which is 3.5 times higher than that of the normal multishell ZnS/CoS2 particles with well-distributed Zn and 11.3 times higher than that of the mixed nonshell ZnS and CoS2 particles. This work demonstrates for the first time that controlling the diffusion rate of the different elements in the semiconductor is an effective route to simultaneously regulate morphology and structure to design highly efficient photocatalysts

    Mapping photonic entanglement into and out of a quantum memory

    Full text link
    Recent developments of quantum information science critically rely on entanglement, an intriguing aspect of quantum mechanics where parts of a composite system can exhibit correlations stronger than any classical counterpart. In particular, scalable quantum networks require capabilities to create, store, and distribute entanglement among distant matter nodes via photonic channels. Atomic ensembles can play the role of such nodes. So far, in the photon counting regime, heralded entanglement between atomic ensembles has been successfully demonstrated via probabilistic protocols. However, an inherent drawback of this approach is the compromise between the amount of entanglement and its preparation probability, leading intrinsically to low count rate for high entanglement. Here we report a protocol where entanglement between two atomic ensembles is created by coherent mapping of an entangled state of light. By splitting a single-photon and subsequent state transfer, we separate the generation of entanglement and its storage. After a programmable delay, the stored entanglement is mapped back into photonic modes with overall efficiency of 17 %. Improvements of single-photon sources together with our protocol will enable "on demand" entanglement of atomic ensembles, a powerful resource for quantum networking.Comment: 7 pages, and 3 figure

    Tundra soil carbon is vulnerable to rapid microbial decomposition under climate warming

    Get PDF
    Microbial decomposition of soil carbon in high-latitude tundra underlain with permafrost is one of the most important, but poorly understood, potential positive feedbacks of greenhouse gas emissions from terrestrial ecosystems into the atmosphere in a warmer world. Using integrated metagenomic technologies, we showed that the microbial functional community structure in the active layer of tundra soil was significantly altered after only 1.5 years of warming, a rapid response demonstrating the high sensitivity of this ecosystem to warming. The abundances of microbial functional genes involved in both aerobic and anaerobic carbon decomposition were also markedly increased by this short-term warming. Consistent with this, ecosystem respiration (R eco) increased up to 38%. In addition, warming enhanced genes involved in nutrient cycling, which very likely contributed to an observed increase (30%) in gross primary productivity (GPP). However, the GPP increase did not offset the extra R eco, resulting in significantly more net carbon loss in warmed plots compared with control plots. Altogether, our results demonstrate the vulnerability of active-layer soil carbon in this permafrost-based tundra ecosystem to climate warming and the importance of microbial communities in mediating such vulnerability

    Cell walls of the dimorphic fungal pathogens Sporothrix schenckii and Sporothrix brasiliensis exhibit bilaminate structures and sloughing of extensive and intact layers

    Get PDF
    This work was supported by the Fundação Carlos Chagas de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), grants E-26/202.974/2015 and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), grants 229755/2013-5, Brazil. LMLB is a senior research fellow of CNPq and Faperj. NG acknowledged support from the Wellcome Trust (Trust (097377, 101873, 200208) and MRC Centre for Medical Mycology (MR/N006364/1). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    Deficiency in origin licensing proteins impairs cilia formation: implications for the aetiology of meier-gorlin syndrome

    Get PDF
    Mutations in ORC1, ORC4, ORC6, CDT1, and CDC6, which encode proteins required for DNA replication origin licensing, cause Meier-Gorlin syndrome (MGS), a disorder conferring microcephaly, primordial dwarfism, underdeveloped ears, and skeletal abnormalities. Mutations in ATR, which also functions during replication, can cause Seckel syndrome, a clinically related disorder. These findings suggest that impaired DNA replication could underlie the developmental defects characteristic of these disorders. Here, we show that although origin licensing capacity is impaired in all patient cells with mutations in origin licensing component proteins, this does not correlate with the rate of progression through S phase. Thus, the replicative capacity in MGS patient cells does not correlate with clinical manifestation. However, ORC1-deficient cells from MGS patients and siRNA-mediated depletion of origin licensing proteins also have impaired centrosome and centriole copy number. As a novel and unexpected finding, we show that they also display a striking defect in the rate of formation of primary cilia. We demonstrate that this impacts sonic hedgehog signalling in ORC1-deficient primary fibroblasts. Additionally, reduced growth factor-dependent signaling via primary cilia affects the kinetics of cell cycle progression following cell cycle exit and re-entry, highlighting an unexpected mechanism whereby origin licensing components can influence cell cycle progression. Finally, using a cell-based model, we show that defects in cilia function impair chondroinduction. Our findings raise the possibility that a reduced efficiency in forming cilia could contribute to the clinical features of MGS, particularly the bone development abnormalities, and could provide a new dimension for considering developmental impacts of licensing deficiency

    In vivo emergence of HIV-1 highly sensitive to neutralizing antibodies.

    Get PDF
    BACKGROUND: The rapid and continual viral escape from neutralizing antibodies is well documented in HIV-1 infection. Here we report in vivo emergence of viruses with heightened sensitivity to neutralizing antibodies, sometimes paralleling the development of neutralization escape. METHODOLOGY/PRINCIPAL FINDINGS: Sequential viral envs were amplified from seven HIV-1 infected men monitored from seroconversion up to 5 years after infection. Env-recombinant infectious molecular clones were generated and tested for coreceptor use, macrophage tropism and neutralization sensitivity to homologous and heterologous serum, soluble CD4 and monoclonal antibodies IgG1b12, 2G12 and 17b. We found that HIV-1 evolves sensitivity to contemporaneous neutralizing antibodies during infection. Neutralization sensitive viruses grow out even when potent autologous neutralizing antibodies are present in patient serum. Increased sensitivity to neutralization was associated with susceptibility of the CD4 binding site or epitopes induced after CD4 binding, and mediated by complex envelope determinants including V3 and V4 residues. The development of neutralization sensitive viruses occurred without clinical progression, coreceptor switch or change in tropism for primary macrophages. CONCLUSIONS: We propose that an interplay of selective forces for greater virus replication efficiency without the need to resist neutralizing antibodies in a compartment protected from immune surveillance may explain the temporal course described here for the in vivo emergence of HIV-1 isolates with high sensitivity to neutralizing antibodies

    Modulation of Sn concentration in ZnO nanorod array: intensification on the conductivity and humidity sensing properties

    Get PDF
    Tin (Sn)-doped zinc oxide (ZnO) nanorod arrays (TZO) were synthesized onto aluminum-doped ZnO-coated glass substrate via a facile sonicated sol–gel immersion method for humidity sensor applications. These nanorod arrays were grown at different Sn concentrations ranging from 0.6 to 3 at.%. X-ray diffraction patterns showed that the deposited TZO arrays exhibited a wurtzite structure. The stress/strain condition of the ZnO film metamorphosed from tensile strain/compressive stress to compressive strain/tensile stress when the Sn concentrations increased. Results indicated that 1 at.% Sn doping of TZO, which has the lowest tensile stress of 0.14 GPa, generated the highest conductivity of 1.31 S cm− 1. In addition, 1 at.% Sn doping of TZO possessed superior sensitivity to a humidity of 3.36. These results revealed that the optimum performance of a humidity-sensing device can be obtained mainly by controlling the amount of extrinsic element in a ZnO film
    corecore