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Abstract

Background: The rapid and continual viral escape from neutralizing antibodies is well documented in HIV-1 infection. Here
we report in vivo emergence of viruses with heightened sensitivity to neutralizing antibodies, sometimes paralleling the
development of neutralization escape.

Methodology/Principal Findings: Sequential viral envs were amplified from seven HIV-1 infected men monitored from
seroconversion up to 5 years after infection. Env-recombinant infectious molecular clones were generated and tested for
coreceptor use, macrophage tropism and neutralization sensitivity to homologous and heterologous serum, soluble CD4
and monoclonal antibodies IgG1b12, 2G12 and 17b. We found that HIV-1 evolves sensitivity to contemporaneous
neutralizing antibodies during infection. Neutralization sensitive viruses grow out even when potent autologous
neutralizing antibodies are present in patient serum. Increased sensitivity to neutralization was associated with
susceptibility of the CD4 binding site or epitopes induced after CD4 binding, and mediated by complex envelope
determinants including V3 and V4 residues. The development of neutralization sensitive viruses occurred without clinical
progression, coreceptor switch or change in tropism for primary macrophages.

Conclusions: We propose that an interplay of selective forces for greater virus replication efficiency without the need to
resist neutralizing antibodies in a compartment protected from immune surveillance may explain the temporal course
described here for the in vivo emergence of HIV-1 isolates with high sensitivity to neutralizing antibodies.
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Introduction

In the course of HIV infection the scenario of development of

neutralizing antibodies (Nabs) followed by viral escape is well

documented. The evolution of viruses to become sensitive to

neutralization in vivo is counterintuitive, since a growth advantage

to a virus that is susceptible to Nabs is difficult to invoke. Here we

characterised the sequential development of neutralization sensi-

tive viruses in vivo as well as the dynamics of the neutralization

escape in the infected individuals.

HIV’s envelope (Env) protein is the target for Nabs. A trimeric

unit of the surface protein, gp120, and the transmembrane protein,

gp41, mediates viral entry into target cells through binding to CD4

and a coreceptor, usually either CCR5 or CXCR4 [1,2]. After the

initial CD4 binding a conformational rearrangement of gp120

variable loops 2 and 3 (V2, V3) results in exposure of the coreceptor

binding domain. Concomitantly, or subsequent, conformational

changes in gp41 result in gp41-mediated fusion of the viral and

plasma membranes. Nabs probably interrupt these processes, with

in vivo targets being defined through isolation of neutralizing

monoclonal antibodies (NMAbs) from infected humans. Broadly

NMAbs, or those that neutralize isolates other than the infecting

strain, have been described. HK20, 2F5 and 4E10 are directed to

the membrane proximal region of gp41 [3,4,5,6]. IgG1b12 and

HJ16 recognise different epitopes within the CD4-binding region in

gp120 [6,7,8]. 2G12 binds a glycan cluster on gp120 [9]. Another

group of broadly NMAbs, including 17b, bind epitopes in the

coreceptor-binding region which typically is only, or better, exposed

following CD4-ligation [10]. HGN194 binds to a conserved epitope

in the V3 crown [6]. Two broadly NMAbs, PG9 and PG16, have

also been described that preferentially recognise the trimeric Env

protein; their epitope recognition relies on V2, V3 and CD4 binding

site [11].

Antibodies that neutralize HIV arise with variable rates and

potency in infected individuals [12,13,14,15,16,17]. Initially, Nabs

against the infecting (autologous) virus develop. There is some

evidence that autologous targets include linear epitopes in the

variable V1/V2 and V3 regions [18,19,20], and in the alpha-2

helix of C3 in subtype C infection [20]. Nabs that also can

neutralize virus from other patients (heterologous isolates) follows

[12,14,15,16,17]. This response is initially confined to a subset of

strains, but can broaden to include geographically diverse virus
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strains [13]. It is not known whether the heterologous response is

the result of maturation of single antibody specificity or the

development of antibodies that recognise distinct epitopes in a

polyclonal response to one or more epitopes. HIV evolves rapidly

in response to Nabs, thus sera rarely neutralize contemporaneous

virus efficiently. Indeed, responses against contemporary autolo-

gous virus (virus from the same time-point as the serum) are

generally undetectable, or much lower, than responses against

earlier autologous virus [12,14,15,21,22]. This is especially evident

in the initial phase of HIV infection, but the picture may be more

complex in chronic infection [23,24,25]. It is unlikely that HIV

can escape Nabs indefinitely [23].

Here we followed the dynamics of alternating viral neutraliza-

tion phenotypes over time in a cohort of Men-who-have-Sex-with-

Men (MSM) that were monitored from seroconversion up to 1–5

years later. The patients had high set-point viral loads ($10, 000

RNA copies/ml) and low levels of heterologous Nabs. Confirming

previous studies, we see the development of neutralization resistance,

including escape from the autologous antibody response. However,

we also see the temporal emergence of viruses exquisitely sensitive to

both autologous and heterologous Nabs. The heightened neutral-

ization sensitivity was mediated by complex context dependent

determinants which include a single arginine residue at position 328

in the stem of V3 in one patient, or a V4 amino acid substitu-

tion (T399I, eliminating a putative N-linked glycosylation site) in

another patient. These findings extend similar recent observations

by Mahalanabis et al. [24] and Bosch et al. [25] who describe the

emergence of neutralization sensitive viruses in patients with

broadly neutralizing antibodies or low levels of viremia, indicating

that Nabs are unable to fully contain virus replication during

chronic infection. This conclusion is further supported by our

observation in a dually infected individual, were one of the HIV

strains only expanded to detectable levels in blood peripheral blood

mononuclear cells (PBMC) after Nabs had developed. The late

emerging strain was susceptible to neutralization by antibodies

present in the patient’s serum prior to its expansion. We propose

that the neutralization sensitive viruses are likely to have evolved in

an in vivo compartment protected from the onslaught of Nabs.

Results

Emergence of neutralization sensitive viruses in infected
individuals

We examined the evolution of HIV-1 viruses with regard to

sensitivity to neutralization in a London cohort of HIV-1 clade B

infected men. The patients’ likely route of exposure was sexual

contact with other men and they experienced a period of symptoms

characteristic of primary HIV infection (PHI). The patients were

monitored at regular intervals from acute, or early, infection and

remained without antiretroviral therapy for the duration of the

study.

Multiple sequential envs were cloned from seven individuals and

inserted into a gp120-deleted clone of HIV-1HXB2 [26]. To ensure

that only contemporary viruses were analysed envs were RT-PCR

amplified from plasma at chronic time-points, whereas envs from

acute infection were amplified from PBMC proviral DNA. The

early envs were cloned from time-points in close proximity to

seroconversion, between 6–32 days after onset of PHI symptoms

(Table S1). The later envs were cloned from time-points following

the development of autologous Nab, the timing of which was

assessed using the envs cloned from acute infection and reported

previously (Table 1; [16,27]). The breadth of the patient’s Nab

responses at the second and subsequent cloning dates (days 316–

1534) were, however, limited (Table 1). Out of the seven patients

studied only three (MM2, MM4 and MM28) had detectable levels

of Nabs against the heterologous neutralization sensitive strain

HIV-1IIIB (IC90s 10–20), and none of the patients had developed

Nabs that also could neutralize the more neutralization resistant

(Tier 2) strain HIV-1YU-2. The patients’ viral loads, CD4 cell

counts and the exact time-points for env cloning are detailed in

Table S2.

Virus susceptibility to neutralization was assessed using three

human sera previously described, QC1, 2 and 6 [16,26] (Fig. 1).

All clones from early infection (days 6–32) were relatively resistant

to neutralization with median IC90 titres (reciprocal serum end-

point dilutions) of 10 against QC1 (range,10–20), ,10 against

QC2 (range,10–10) and 40 against QC6 (range 10–80).

However, within 2 years of infection, viruses from 3/7 patients

(MM4, MM8 and MM23) were mixed populations including

variants highly sensitive to heterologous serum (IC90s between 80–

5,120; see day 493 MM4, day 608 MM8 and day 316 MM23).

This heightened serum sensitivity was striking even in comparison

with the Tier 1 reference strains HIV-1MN and HIV-193MW962.25.

IC90 titres of the reference sera against HIV-1MN and HIV-

193MW962.25 were between 160–320 and 320–2,560, respectively.

The Tier 2 clade B reference strains HIV-1YU2 and HIV-1PVO.4

scored between,10–10. The emergence of neutralization sensitive

viruses in the blood was transient in all patients. In patient MM23,

however, the neutralization sensitive viruses persisted for an

extended period (days 316–1065), becoming exceptionally serum

sensitive (IC90s.2,560) before ‘reverting’ to a resistance by day

1534. All viruses tested from day 1534 were neutralization

resistant, including multiple clones with IC90s of,10 against all

three sera. A more transient pattern of development of neutra-

lization sensitive variants followed by resistance was seen in MM4

and MM8. All Envs cloned from MM4 and MM8 approximately

1 year after the appearance of sensitive viruses (days 833 and 957,

respectively) were neutralization resistant. During the same

timeframe, the virus populations in MM1, MM2, MM27 and

MM28 appears to have remained neutralization resistant; it is,

however, possible that neutralization sensitive viruses arose and

subsequently were contained in between the sampling points tested.

Regardless, the above experiments demonstrate that neutralization

sensitive viruses commonly arise in vivo.

Neutralization sensitive clones emerge despite being
highly susceptible to neutralization by contemporaneous
autologous sera

All envs cloned from the three patients (MM4, MM8 and

MM23) where we identified neutralization sensitive virus were

assayed against sequential autologous sera. Data for one or two

representative clone from each time-point is shown in Fig. 2. MM4

had developed Nabs by day 206 (IC90 20), MM8 by day 81 (IC90

10) and MM23 by day 113 (IC90 10) (Table 1). As expected, the

titre of Nabs against the early (neutralization resistant) Envs

increased for a period of several months after their circulation (see

day 17 MM4, day 12 MM8 and day 15 MM23; Fig. 2). We also

observed the expected pattern of sequential escape from the

autologous Nab response by Envs cloned from chronic infection.

However, this was not an absolute rule; we found that high

susceptibility to neutralization by heterologous serum was reflected

in sensitivity to autologous serum and lack of escape. Lack of

escape was also noted for one of the neutralization resistant Envs

cloned from chronic infection.

The neutralization sensitive Envs amplified from MM4 on day

493 were sensitive to earlier serum from day 206 (IC90 160), to

contemporaneous serum (serum taken from the same time-point as

the virus, IC90 160) and also later serum (day 833, IC90 320). This

Neutralization Sensitive HIV-1 In Vivo
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was in sharp contrast to the neutralization resistant clone from day

493, which had escaped the autologous Nab response (sera from

days 206 and 493 IC90,10) and also was resistant to serum from

day 833 (IC90,10). MM239s neutralization sensitive viruses were

even more striking being neutralized by contemporaneous sera

with IC90s of 80 (day 316 virus) and .6,000 (day 1065 viruses).

MM239s sensitive viruses were also neutralized by serum from

earlier time-points, to either a similar (day 316) or higher (day

1065) degree than the virus cloned from acute infection (day 15).

As in MM4 this was in sharp contrast to the co-circulating

neutralization resistant clone (from day 316), which had escaped

the autologous Nabs in earlier and contemporary serum samples

(IC90s,10), and only was neutralized by sera from a later time-

point (day 722, IC90 30). MM89s sensitive clones were neutralized

by contemporaneous serum (IC90 80), but only slightly more

potently than the contemporary (day 608) neutralization resistant

clone, which was unusual in that it did not display escape from the

autologous Nab response (IC90 20, compared to IC90s of 20–80 for

Envs from days 12–32). The later MM8 clones, from day 957,

were, however, resistant to neutralization by both earlier and

contemporaneous sera (IC90s,10), indicating that the patient’s

Nab response was sufficiently potent to impose viral escape by this

point. All the later viruses from MM4 (day 833) and MM23 (day

1534) were largely resistant to autologous contemporary sera

(IC90s#10), as would be expected from the current model of

continuous Nab escape in HIV-1 infection [14,15,21,22].

In summary, we found that all patients initially harboured

neutralization resistant viruses which diversified with time and

frequently (but transiently) became exceptionally sensitive to

neutralization by both autologous and heterologous sera. This

occurred despite the presence of Nabs in the blood which were of

sufficient potency to drive viral escape. In two patients (MM4 and

MM23), Nab escape variants co-circulated with the highly

neutralization sensitive viruses. In the third patient (MM8) Nab

escape was only observed at a later sampling point, but it is

possible that concurrent escape was missed due to the limited

Table 1. Neutralizing activity of sequential serum samples.

Patient: Virus: IC90 of sera from indicated time-points (days following onset of symptoms):a

MM1 28b 48 84 284 494 833

Early Env c ,10d nt ,10 ,10 20 80

IIIB nte ,10 ,10 nt ,10 ,10

YU2 nt ,10 nt nt ,10 ,10

MM2 32 77 113 155 291 484 690

Early Env ,10 ,10 ,10 10 40 80 80

IIIB ,10 ,10 ,10 ,10 10 10 10

YU2 nt nt nt nt nt nt nt

MM4 17 108 206 297 493 574 833

Early Env ,10 ,10 20 10 20 20 40

IIIB nt nt nt ,10 ,10 ,10 20

YU2 ,10 nt ,10 nt ,10 ,10 ,10

MM8 12 49 81 333 608 810 957

Early Env ,10 ,10 10 20 20 40 40

IIIB ,10 ,10 ,10 ,10 ,10 ,10 ,10

YU2 ,10 ,10 nt ,10 nt ,10 nt

MM23 15 64 113 204 316 498 1065

Early Env ,10 ,10 10 80 160 320 80

IIIB ,10 ,10 nt ,10 10 20 20

YU2 ,10 ,10 ,10 ,10 ,10 ,10 ,10

MM27 28 39 109 299 466 585

Early Env ,10 ,10 ,10 ,10 10 20

IIIB nt ,10 ,10 nt ,10 ,10

YU2 nt ,10 ,10 nt ,10 nt

MM28 6 9 62 93 198 405 503

Early Env nt ,10 ,10 ,10 ,10 10*f 10*

IIIB nt ,10 ,10 ,10 ,10 10 20

YU2 nt ,10 ,10 ,10 nt ,10 nt

aTitres are expressed as the reciprocal dilution of serum required to reduce infectivity by $90% (IC90) compared to pooled HIV ve- serum control.
bSerum samples collected from the indicated days after onset of symptoms characteristic of PHI. Time-points from which envs were cloned are underlined.
cThe development of autologous Nabs was assessed against the envs cloned from acute infection (days 6–32), as previously reported [16,27].
d,10, less than 90% reduction of infection was observed at the highest serum input tested (1:10 dilution).
ent, not tested.
f*, A clear autologous Nab response had developed by day 405, but it only achieved ,80% reduction of infection at the highest serum input assayed (1:10 dilution).
doi:10.1371/journal.pone.0023961.t001

Neutralization Sensitive HIV-1 In Vivo
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Figure 1. Susceptibility of sequential Envs to neutralization by heterologous sera. The neutralization phenotype of sequential Envs
derived from seven HIV-1 infected patients (MM1, 2, 4, 8, 23, 27 and 28), at the indicated days following onset of PHI symptoms, was assessed against
three heterologous sera (QC1, 2 and 6) with IC90 titres (reciprocal serum end-point dilutions) being reported. Five reference strains were also assayed
for comparative purposes. Where less than 90% reduction of infection was observed at the highest serum concentration tested (1:10 dilution) the
data is plotted as 1. All patients were infected with neutralization resistant viruses, but highly neutralization sensitive variants (Tier 1 like) emerged
during chronic infection in at least three individuals (MM4, 8 and 23). The autologous Nab response to the underlined clones is shown in Fig. 2.
doi:10.1371/journal.pone.0023961.g001

Neutralization Sensitive HIV-1 In Vivo

PLoS ONE | www.plosone.org 4 August 2011 | Volume 6 | Issue 8 | e23961



sampling of resistant Envs from the time-point when the

neutralization sensitive variants emerged (one clone was tested).

Thus, neutralization sensitive Envs arise despite onslaught from

Nabs in the blood.

Phylogenetical analysis of envelopes – identification of a
dual infection

The env genes cloned from the seven patients were sequenced

and a maximum-likelihood a tree was generated (Fig. 3). For

robustness 200 additional clade B envs from the Los Alamos

National Laboratory (LANL) database were included. Envs from

6/7 patients, including MM4 and MM8, formed single clusters

with bootstrap values of 100% for each patient confirming the

phylogenetical relationship between the clones. However, the

clones from patient MM23 formed two separate clusters (indicated

with stars, Fig. 3), and their amino acid sequences differed by

approximately 25% (not shown). This indicates that MM23 was

infected with two distinct stains; strain A which was cloned from

days 15, 316 and 1534 and remained neutralization resistant, and

strain B that only amplified from day 316 onwards, and was highly

sensitive to neutralization when first detected (at day 316 and

1065).

Characterisation of the dual infection of MM23
The dual infection of patient MM23 afforded us the opportunity

to follow the evolution of two distinct viral quasispecies. In the

above experiments strain B was only amplified from plasma

samples taken a year, or more, after the appearance of strain A.

We first sought to define whether MM23 was superinfected (i.e. if

infection first occurred with strain A and later with stain B) or if

both strains infected MM23 prior to seroconversion.

Primers were designed for nested PCR to differentially amplify

either strain A or B, and applied to proviral DNA extracted from

PBMC and plasma viral RNA (Fig. 4). Strain A was detected at all

time-points, from day 9 to 1534, both in PBMC and plasma

samples (Fig. 4A and B). Strain B was also detected in plasma

samples from day 9 onwards (Fig. 4B). Hence, MM23 was most

likely infected with both strains around the same time-point, which

is consistent with the case history of the patient.

Interestingly, even though the PCR could efficiently and

specifically amplify strain B, we could not detect it in PBMC

until day 204 (Fig. 4A). Comparison of the PCR products in Fig. 4

indicates that strain B was a ‘minor species’ compared to strain A,

at least in the blood, before day 204. Thus, although MM23 was

dually infected, only strain A established itself (at a detectable level)

in PBMC in the initial phase of the infection. The outgrowth of

strain B (occurring between days 113 and 204) was not associated

with a fall in CD4 cell numbers or an increase in viral load,

although we can not exclude that a transient change (’blip’) may

have occurred in between the sampling points (Fig. 4). Likewise,

no fluctuation in viral load or CD4 numbers was seen upon the

emergence of neutralization sensitive viruses in patients MM4 and

MM8 (Table S2).

Expansion of strain B occurred following induction of a
specific Nab response

Having established that strain B was present in patient MM23

from seroconversion, we questioned the role of Nabs in the

dynamics of its evolution. The data on the neutralizing activity of

chronological autologous serum samples was re-analyzed with

attention on the strain identity of the different Env clones (Table 2A).

To get a better understanding of the breadth of the Nab response,

MM239s sera were also assayed against five heterologous HIV

strains with varied susceptibility to neutralization (Table 2A). Serum

Nabs were first detectable at day 64, against the highly neutra-

lization sensitive Tier 1 virus HIV-193MW965.25 (IC90 11), but these

Figure 2. Susceptibility of patient Envs to neutralization by sequential autologous sera. All Envs cloned from patients MM4, MM8 and
MM23 (i.e. the patients in which we identified neutralization sensitive virus) were assayed against sequential autologous sera. The IC90 titres
(reciprocal serum end-point dilutions) are reported for one representative clone from each time-point (underlined in Fig. 1) and viruses that are highly
susceptible to neutralization (by heterologous sera) are labelled accordingly (i.e. 493-S, 608-S, 316-S and 1065-S). Due to lack of serum some clones
could not be tested against all serum samples. These are labelled accordingly (nt, not tested) and include: MM4 day 493 and 833 viruses which were
not tested against day 17 and 108 sera, and MM23 day 1534 viruses which only were assayed against sera from day 316 and 1534. Where less than
90% reduction of infection was observed at the highest serum concentration tested (1:10 dilution) the data is plotted as 1.
doi:10.1371/journal.pone.0023961.g002
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Figure 3. Phylogenetic relationship between cloned envs. Maximum-likelihood tree representing the phylogenetic relationship between 56
HIV-1 partial (1937 bp) env gene sequences from seven HIV-infected patients from the UK and 200 HIV-1 subtype B env gene sequences extracted
from the LANL HIV database. The tree was reconstructed according to the GTR+I+G model of nucleotide substitution. Branch lengths are expressed as
the number of nucleotide substitution per sites, with branches leading to the clones generated herein indicated in bold. Percent bootstrap support
values above 90%, or of 100%, are indicated by one or two asterisks, respectively, on the corresponding branches. The envs are labelled with patient
ID followed by isolation day (e.g. MM1-28, env from MM1 day 28). Clones from patient MM23 separates into two distinct clusters (marked with stars),
indicating that the patient was infected with two different clade B strains.
doi:10.1371/journal.pone.0023961.g003
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early Nabs were unable to neutralize any of the other heterologous

strains or any of the MM23 viruses (IC90s,10). Day 113 serum

neutralized autologous strains A and B; 2/3 virus A clones derived

from day 15 (IC90 11-12), and virus B from days 316 (IC90 12) and

1065 (IC90.40). By day 204, when strain B was first detected in

PBMC, the potency of the Nab response had increased slightly so

that the IC90 for the earliest strain B clone assayed was 26 (clone

23.8.12 from day 316). The serum from day 204 displayed no

neutralizing activity against the equally neutralization sensitive

strains HIV-1MN and HIV-1IIIB (or against the more neutralization

resistant strains HIV-1YU2 and HIV-1PVO.4; for comparison of

viruses susceptibility to neutralization see Fig. 1). Hence, a Nab

response specific to strain B had evidently developed prior to the

strains expansion into (or in) PMBC but this response was unable to

contain the virus replication in vivo. Indeed, although contempora-

neous serum samples failed to neutralize stain A throughout the

study, as has been reported as a characteristic of HIV infection

[14,15,21,22], the picture was different for strain B. Virus from day

316 (23.8.12) was inhibited by serum from the same time-point

(IC90 64), and viruses from day 1065 (23.12.3/7) were extremely

sensitive to contemporary serum (IC90.6,000). Escape from the

autologous Nab response by strain B was detectable at day 1534,

when viruses (23.13.1/4/16) were no longer neutralized by serum

from earlier time-points (day 316, lack of serum precluded

additional sampling), and only weakly neutralized by contemporary

sera (IC90s 11–17). This escape from autologous neutralization

coincided with loss of sensitivity to heterologous serum (IC90s 10–

40, Fig 1).

Neutralization sensitivity is associated with exposure of
the CD binding site and CD4-induced epitopes

In addition to assessing the MM23 viruses’ susceptibility to

neutralization by sera we also tested them against a panel of

NMAbs (IgG1b12, 2G12 and 17b) and soluble CD4 (sCD4;

Table 2B). Strain A was resistant to all reagents except 2G12

(IC50s.15 mg/ml). In contrast, the serum sensitive clone of strain

B from day 316 (23.8.12) was neutralized by sCD4, IgG1b12 and

2G12 with IC50 values,5 mg/ml; and, interestingly, with a similar

potency by 17b in the absence (IC50 6.8 mg/ml) or presence (IC50

7.2 mg/ml) of sCD4. The exceptional serum-sensitivity of clones

from day 1065 (23.12.3/7) was reflected in their susceptibility to

neutralization by sCD4 (IC50 0.05–0.06 mg/ml), IgG1b12 (IC50

0.07 mg/ml) and 17b (presence and absence of sCD4; IC50s 0.2–

0.6 mg/ml). Envs 23.12.3/7 were, however, resistant to neutral-

ization by 2G12, presumable due to an amino acid substitution

[aspagarine (N) to serine (S)] at the 2G12-associated N-linked

Figure 4. MM23 strain specific nested PCR. Strain specific primers for nested PCR were designed to amplify ,500 bp segments of the env gene
of MM239s viruses. The PCR conditions were optimised on plasmids encoding previously cloned envs and then applied to PBMC proviral DNA (Fig. A),
or plasma viral RNA (Fig. B), from indicated days after onset of PHI.symptoms. (A) Strain A is detectable in PBMC from all time-points assayed
(expected size of PCR product 577 bp), whereas strain B is only detectable from day 204 onwards (expected size of PCR product 524 bp). (B) Strain A
is detectable in plasma samples from all time-points assayed, and likewise is strain B. The marker (M) is the BenchTop 100 bp DNA ladder (Promega,
UK), which contains a 500 bp band of triple intensity. Positive controls (+) were plasmid pHXB2env23.2.E (for strain A) and pHXB2env23.8.12 (for strain
B). As a negative control (–) proviral DNA or viral RNA was replaced with dH2O. Footnotes: a Plasma viral load (VL) determined using Chrion 3.0
(Emeryville, Cal., USA); b nd, not determined.
doi:10.1371/journal.pone.0023961.g004
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glycosylation site (NLGS) at residue N332 (data not shown) [28].

The IC50 values for strain B 23.12.3/7 were within the same range

as those for the Tier 1 strain HIV-1MN, except that 17b only

neutralized HIV-1MN in the presence of sCD4. However,

somewhat surprisingly, the late (day 1534) serum resistant strain

B clones (23.13.1/16) displayed similar susceptibility to neutrali-

zation by sCD4, IgG1b12 and 17b (IC50s 0.08–2.8 mg/ml) as the

earlier sensitive Envs. The serum sensitive viruses from patients

MM4 and MM8 were, like those of MM23, neutralized by 17b in

the absence of sCD4 (IC50s 4.0–8.0 mg/ml), but more potently

with sCD4 (IC50s 0.01–0.03 mg/ml; not shown). They were also

highly sensitive to neutralization by either sCD4 (MM4, IC50s

0.2 mg/ml) or IgG1b12 (MM8, IC50s 0.2–0.3 mg/ml; not shown).

Neutralization sensitive phenotype confirmed by SGA
As the envs were cloned by conventional PCR, the neutralisation

sensitive phenotype observed in chronic infection may be due to

PCR errors such as recombination between different genomes

during amplification. Additionally, although most Nabs target the

surface unit of Env (gp120), the interaction of the patients’ gp120s

with a heterologous transmembrane unit (HIV-1HXB2 gp41) in the

vector system we used to generate virus could possibly affect their

phenotype. To address these concerns we re-amplified full-length

gp160 sequences from MM4 day 493 and MM8 day 608 by single-

genome-amplification (SGA) [29]. Virus was then produced by

pseudotyping an env-deleted HIV genome with the gp160 clones.

Sequence data was obtained for 34 SGA-derived envs from

MM4 and 21 from MM8. All but two of the clones were unique

and none of them were identical to the original envs cloned into the

HXB2-vector (Figure S1).

Two SGA-cloned Envs from MM4 and three from MM8 were

selected for assessment in neutralisation assays and tested against

heterologous sera (QC1 and 2) alongside the original neutraliza-

tion sensitive gp120-chimeras 4.10.3 (MM4) and 8.8.3 (MM8)

(Fig. 5). One of the two SGA-cloned Env-pseudotypes from MM4

(4.10_SGA9) was neutralization sensitive (IC90s 180), with titres

comparable to that of the previously characterised chimera

derived from the same time-point (4.10.3, IC90s 540). The other

clone was neutralization resistant (4.10_SGA29, IC90s,20). One

of three SGA-derived Env-pseudotypes from MM8 was also highly

neutralisation sensitive (IC90s 1,620-4,860), while the other clones

were neutralization resistant (8.8_SGA1/14, IC90s,20). This data

Table 2. Susceptibility of MM239s viruses to neutralization by autologous sera, sCD4 and MAbs.a

A IC90 (reciprocal serum dilution) B IC50 (mg/ml)

Autologous serum from days:b

Virus: 15 37 64 113 204 316 722 1065 1534 sCD4 IgG1b12
17b

(+sCD4)f
17b

(2sCD4) 2G12

Autologous virus: Clone c:

Day 15 strain A 23.2.D ,10d ,10 ,10 ,10 51 254 215 77 nte .15g .15 N/Ah .15 .15

23.2.E ,10 ,10 ,10 11 87 263 306 101 27 .15 .15 N/A .15 .15

23.2.H ,10 ,10 ,10 12 84 148 154 81 nt .15 .15 N/A .15 .15

Day 316 strain A 23.8.18 ,10 ,10 ,10 ,10 ,10 ,10 33 ,10 ,10 .15 .15 N/A .15 5.1

strain B 23.8.12* ,10 ,10 ,10 12 26 64 139 303 59 1.1 0.6 7.2 6.8 3.7

Day 1065 strain B 23.12.3* ,10 ,10 ,10 .40 39 100 5,352 7,742 6,238 0.06 0.07 0.2 0.3 .15

23.12.7* ,10 ,10 ,10 235 907 2,627 5,618 6,992 7,240 0.05 0.07 0.2 0.6 .15

Day 1534 strain A 23.13.5 nt nt nt nt nt ,10 nt nt ,10 .15 .15 N/A .15 .15

23.13.14 nt nt nt nt nt ,10 nt nt ,10 .15 .15 N/A .15 .15

strain B 23.13.1 nt nt nt nt nt ,10 nt nt 14 0.4 0.08 0.7 1.0 .15

23.13.4 nt nt nt nt nt ,10 nt nt 11 nt nt nt nt nt

23.13.16 nt nt nt nt nt ,10 nt nt 17 1.7 0.2 0.6 2.8 .15

Heterologous virus:

MN Tier 1 ,10 ,10 ,10 ,10 ,10 13 nt 23 13 0.2 0.2 0.01 .15 .15

93MW962.25 Tier 1 ,10 ,10 11 47 332 nt nt 3,241 2,935 nt nt nt nt nt

IIIB ,10 nt ,10 nt ,10 10 nt 20 21 nt nt nt nt nt

YU-2 Tier 2 ,10 nt ,10 nt ,10 ,10 nt ,10 ,10 nt nt nt nt nt

PVO.4 Tier 2 nt nt ,10 nt nt nt nt nt ,10 12.1 .15 .15 .15 5.6

aTiters are expressed as: (A) the reciprocal dilution of serum required to reduce infectivity by $90% (IC90) compared to pooled HIV ve- serum control; or (B) the
concentration of sCD4 or MAb required to reduce infectivity by $50% (IC50) compared to medium only control.
bMM23 serum samples collected from the indicated days after onset of symptoms characteristic of PHI.
cClones indicated with an asterisk (*) displayed high sensitivity to neutralizzation by heterologous sera.
d,10, less than 90% reduction of infection was observed at the highest serum input tested (1:10).
ent, not tested.
fViruses were assayed for neutralization by MAb 17b both in the presence (+sCD4) and absence (2sCD4) of sCD4. When sCD4 was included with 17b reduction in
infection was calculated against virus assayed in the presence of sCD4 alone. The amount of sCD4 included varied between viruses, being equal to the IC50 for each
virus.
g.15, less than 50% reduction of infection was observed at the highest (15 mg/ml) concentration tested.
hN/A, not assessed as the virus was resistant to neutralization by sCD4.
doi:10.1371/journal.pone.0023961.t002

Neutralization Sensitive HIV-1 In Vivo

PLoS ONE | www.plosone.org 8 August 2011 | Volume 6 | Issue 8 | e23961



confirms our original observation of a mixed population of

neutralization sensitive and neutralization resistant viruses in

chronic infection in MM4 and MM8.

Complex determinants of neutralization sensitivity
Comparison of amino acid sequences changes between neutral-

ization resistant and sensitive Env clones did not reveal any obvious

amino acid residues common to all sensitive Envs. Therefore, we

attempted to identify molecular determinants of neutralization

sensitivity by swapping Env regions followed by site-directed

mutagenesis (SDM), using Envs from patients MM4 and MM8.

Fig. 6 shows a schematic of the Env swaps and SDM used to map

determinants of neutralization sensitivity and resistance.

Introduction of the ‘V3-V5’-region (residues 274–503) from the

neutralization resistant MM4 clone (4.10.7) into the sensitive

MM4 clone (4.10.1) resulted in neutralization resistance (chimera

1, Fig. 6A). The reverse swap was lethal (chimera 2, Fig 6A). This

demonstrates that the ‘V3–V5’-region contains key determinants

of sensitivity/resistance to serum neutralization. We next deter-

mined the contribution of an amino acid substitution in the stem of

V3 (residue 328). Residue 328 is a basic amino acid (arginine, R,

or lysine, K) in the sensitive MM4 Envs but a polar amino acid

(glutamine, Q) in most other clones, in agreement with the

consensus for clade B viruses (Figure S1A). The R328Q change in

the sensitive Env conferred serum resistance (4.10.1-R328Q).

However, reverse mutagenesis in the resistant Env had no effect

(4.10.7-Q328R). This indicates that the V3 loop is the major

determinate of neutralization sensitivity/resistance in MM4, but

also that additional residues are important.

In MM8 the introduction the ‘V4–V5’-region (residues 369–

503) of the sensitive Env (8.8.8) into the resistant clone (8.8.4)

conferred partial neutralization sensitivity (chimera 1, Fig 6B). The

reverse swap, however, had little or no effect on the neutralization

phenotype (chimera 2), indicating the presence of sensitising

amino acid residues in both halves of Env. We next focused on a

threonine (T) to isoleucine (I) mutation at residue 399, which

eliminates a putative NLGS in V4, and is conserved between all

neutralization sensitive MM8 Envs (Figure S1B). This residue has

been previously implicated in neutralization escape [14]. The

T399I mutagenesis in the resistant MM8 Env conferred partial

sensitivity, replicating the phenotype of chimera 1 (8.8.4-T399I,

Fig. 6B). Regrettably we were unable to pinpoint neutralization

sensitising determinants in the N-terminal half of MM89s Env

(data not shown). Hence, in our patient sets we found that

determinants of neutralization sensitivity are complex but that

residues within V3 and V4 are important.

Viral tropism - lack of association with macrophage
infectivity

Others have reported emergence of neutralization sensitive

viruses during transition in coreceptor usage from CCR5 (R5) to

CXCR4 (X4) [30]. In our study clinical progression and coreceptor

Figure 5. Neutralization phenotype of SGA derived gp160 Envs. The neutralization phenotype of SGA derived full-length Envs was assessed
against heterologous sera QC1 and 2 alongside neutralization sensitive HXB2-gp120 chimeras. Top panels display data for Envs from MM4 day 493;
SGA clone 4.10_SGA9 was almost as neutralization sensitive as the original HXB2-gp120 chimera 4.10.3 whereas clone 4.10_SGA29 displayed a
neutralization resistant phenotype (IC90s,20). Lower panels display data for Envs from MM8 day 608; one out of three SGA clones tested (8.8_SGA11)
was hyper sensitive to neutralization. The graphs display data from one representative titration, with error bars representing the standard deviations
between replicates.
doi:10.1371/journal.pone.0023961.g005
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switch was only observed in MM8, where a mixed population of

R5-only and R3/R5/X4-tropic Envs were cloned a year after (on

day 957) the appearance of neutralization sensitive viruses [31]. The

earlier viruses from MM8, including the neutralization sensitive

clones, and also all Envs from MM4 and MM23, were R5/R3-

tropic (Table 3, [31,32]). Another possible explanation for the

emergence and persistence of MM23 strain B despite its high

sensitivity to neutralization by autologous (and heterologous) sera

could be that the strain replicated in a Nab protected niche. We

tested the ability of a subset of MM239s viruses to infect primary

Monocyte-Derived-Macrophages (MDM). Only strain B-23.13.4, a

day 1534 neutralization resistant clone, was able to infect these cells

(Table 3). Likewise, there was no association between tropism for

MDM and sensitivity to neutralization in patients MM4 and MM8

(Table 3). Indeed, the two (day 493) neutralization sensitive Envs

cloned from MM4 displayed marked differences in macrophage

tropism, as did the two (day 608) neutralization sensitive Envs

cloned from MM8 (Table 3). The neutralization resistant MM4 and

MM8 viruses ranged from being highly macrophage tropic

(achieving similar titres on NP-2/CD4/CCR5 cells and MDM) to

being non-MDM tropic (no or minimal levels of MDM infection).

These observations indicate that the development of neutralization

sensitive viruses occurs in the absence of clinical progression or

coreceptor switch, and without any link to macrophage tropism.

Figure 6. Molecular determinants of heightened neutralization sensitivity. To map molecular determinants of the neutralization sensitive
phenotype sections of the env gene was swapped between neutralization sensitive (black boxes) and neutralization resistant (white boxes) gp120
clones from MM4 day 493 (A) and MM4 day 608 (B). This was done by exploiting conserved Bgl II or PpuM I restriction enzyme sites (indicated in the
figure) in combination with restriction sites incorporated in the primers used for gp120 cloning (see Figure S1 for details). Further mapping was done
by SDM, altering amino acid residues indicated with asterisks. The phenotype of the chimeras and the mutants was assessed against heterologous
sera (QC1, 2 and 6) with IC90 titres (reciprocal serum end-point dilutions) being reported. (A) The neutralization sensitive phenotype of MM4 clone
4.10.1 was dependent on an unusual arginine (R) residue in the stem of V3 (4.10.1-R328Q). However, introduction of this residue was not sufficient to
infer sensitivity on the resistant MM4 clone 4.10.7 (4.10.7-Q328R). (B) In MM8, neutralization sensitivity determinants were present on both sides of
the PpuM I site (chimera 1 and 2) and included a threonine to isoleucine change at residue 399 in V4 (compare 8.8.4 and 8.8.4-T399I).
doi:10.1371/journal.pone.0023961.g006
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Discussion

Here we show that despite only neutralization resistant HIV-1

viruses being detectable in primary infection, viruses highly

sensitive to neutralization arise over time in vivo. The outgrowth

of such neutralization sensitive viruses occurs even though potent

Nabs are present in serum.

Our results, at first, are apparently at odds with previous studies

demonstrating the development of neutralization escape rather than

sensitivity in vivo [14,15,22]. But to the contrary, we confirm and

extend these observations. We confirm the ability of contempora-

neous virus to escape autologous neutralization and further show

the development of neutralization sensitive viruses, sometimes

concordantly with neutralization escape. In some cases neutraliza-

tion sensitive viruses persist in the blood for many months before

resistance develops.

Our observation of emergence of neutralization sensitive viruses

in a cohort of clade B infected MSM complements other recent

studies which have reported similar emergence of neutralization

sensitive variants during chronic infection in (1) clade B infected

(elite) viremic controllers with moderately broad Nab responses [24]

and (2) in one clade A infected individual with an exceptionally broad

Nab response [25]. In both our study and in those of Mahalanabis

et al. [24] and Bosch et al. [25], neutralization sensitive variants

emerged despite being susceptible to neutralization by contempo-

raneous sera and sera from (several months) earlier in infection. We

show that the hypersensitive phenotype is unlikely to be an in vitro

artefact by employing SGA and cloning of full-length envs. Together

these reports provide evidence that although Nabs shape the viral

quasispecies they do not invariably drive escape in chronic HIV

infection. Neutralization sensitive viruses emerge in patients with a

wide range of viral loads and a broad spectrum of Nab responses.

Furthermore, in the case of the dually infected patient MM23 a

specific (strain recognising) Nab response of reasonable potency was

unable to prevent the late expansion of strain B into PBMC.

The molecular determinants for the neutralization sensitive

phenotype were found to be complex and context dependent. An

amino acid substitution in the stem of the V3-loop (Q328R) was

identified as essential, but not sufficient, for the sensitive phenotype

of MM49s viruses. In MM89s virus, the neutralization sensitive

phenotype was partly due to a threonine to isoleucine change in V4

(T399I). This amino acid change eliminates a putative NLGS that

previously have been implicated in Nab escape [14]. Hence, in our

patient set we found that residues within V3 and V4 impacted on

virus susceptibility to neutralization.

The observations made in this report raise several questions,

including to what extent the neutralization sensitive variants con-

tributes to the contemporary and subsequent composition of the

viral quasispecies. The ease by which we identified sensitive clones

indicates that (at times) neutralization sensitive variants could

account for a sizable fraction of the replicating viral population.

Furthermore, the in vitro infectivity of the neutralization sensitive

viruses was comparable to that of the neutralization resistant

variants, both with regard to the titres obtained and the number of

infectious units per picogram of reverse transcriptase (data not

shown).

Table 3. Coreceptor usage and tropism for MDM.

Patient
Env isolation
daya Env clone

Neutralization
phenotypeb

Coreceptor
usagec

MDM
tropismd

MM4e 17 4.1.33 R R5/R3 2

493 4.10.1 S R5/R3 2

493 4.10.3 S R5/R3 ++

493 4.10.7 R R5/R3 ++

844 4.12.1 R R5/R3 (+)

MM8e 12 8.2.50 R R5/R3 +++

12 8.2.51 R R5/R3 +

608 8.8.3 S R5/R3 ++

608 8.8.4 R R5/R3 +++

608 8.8.8 S R5/(R3) (+)

608 8.9.D R X4/R5/R3 ++

608 8.9.I R R5 +

MM23 15 strain A- 23.2.E R R5/R3 2

316 strain A- 23.8.18 R R5/R3 2

1534 strain A- 23.13.14 R R5/(R3) 2

316 strain B- 23.8.12 S R5/R3 2

1065 strain B- 23.12.7 S R5/(R3) 2

1534 strain B -23.13.4 R R5/(R3) +

aTime-point from which the patient env was amplified, in days from onset of symptoms characteristic of PHI.
bVirus susceptibility to neutralization by heterologous sera (see Fig. 1); S, sensitive: R, resistant.
cCoreceptor tropism assessed on NP-2/U87 indicator cells expressing CD4 and one of the putative coreceptors CCR5, CXCR4 and CCR3. Coreceptors supporting viral
entry within 1 log10 (or in brackets 2 log10) of the level seen with the preferred coreceptor are listed; R5, CCR5; R3, CCR3; X4, CXR4.
dAssessed by p24 immunostaining four days post-inoculation. The tropism for MDM is scored relative to the virus titre on NP-2/CD4/CCR5 cells; +++ titre on MDM.90%
of the titre on NP-2 cells; ++ .10%: + .1%; (+) .0.1%; -, no detectable infection or ,0.1% of titre on NP-2 cells.
eThe coreceptor usage of the Envs from acute infection and the first chronic infection time-point has been reported previously [31,32], as have the data on MDM
tropism for MM49s and MM89s viruses [50].
doi:10.1371/journal.pone.0023961.t003

Neutralization Sensitive HIV-1 In Vivo

PLoS ONE | www.plosone.org 11 August 2011 | Volume 6 | Issue 8 | e23961



A second major question raised by this study is how the

neutralization sensitive viruses can emerge. One possibility is that

the neutralization sensitive clones co-opt Nabs to promote

infection of cells expressing Fc- (or complement-) receptors [34].

We addressed this possibility by titrating virus on primary MDM

in presence of serial-diluted autologous sera, but we found no

indication of enhanced infection (data not shown). Hence, our data

does not support this scenario.

We prefer the hypothesis that the neutralization sensitive viruses

evolve in a compartment ‘protected’ from neutralization or an

immune-privileged site. Possible immune privileged sites with

relevance to HIV infection include the CNS/brain and the gonads

(testis) [35]. Growth in the absence of Nabs could favour viruses

with better replication kinetics perhaps due to a more ‘open’ CD4-

binding region. The scenario is akin to T cell line adaptation of

HIV-1 in vitro. T-cell line adapted viruses are typically much more

sensitive to Nabs, particularly to the CD4-binding region [33]. In

support of this notion, all Envs with heightened serum sensitivity

were potently neutralized by sCD4 and/or IgG1b12. Neutraliza-

tion by 17b in the absence of sCD4 was also observed, which could

indicate a more exposed co-receptor binding site. In contrast, out

of nineteen serum resistant env-chimeras tested from this patient

group (MM1-MM28) only three were neutralized by 17b in

absence of sCD4.

The kinetics of viral replication in patient MM23 also support

the hypothesis that sensitive strains may evolve in a separate

compartment. Phylogenetic analysis demonstrated that MM23

was infected with two distinct strains. Strain A was detectable in

both plasma and PBMC throughout the study and remained

neutralization resistant. Strain B, however, was a ‘minor species’ in

the plasma in early infection and could only be detected in PBMC

after day 204. This suggests that strain B was replicating in a

separate compartment during the initial phase of the infection.

It is well known that HIV is able to infect the CNS/brain with

macrophage tropism often predicting the ability of primary HIV-1

strains to replicate in microglia [37,38]. Most likely the virus enters

the CNS mainly through infected monocytes and macrophages, or

lymphocytes [36], when viral replication is at its highest, at peak

primary viremia. Duenas-Decamp et al. have shown that epitopes

that determine sensitivity to IgG1b12 affect macrophage tropism

and the ability to use low levels of CD4 [39]. This lead us to

question whether the observed serum sensitivity was associated

with macrophage tropism, but we found no link. Thus, if neutra-

lization sensitivity is associated with protected replication in the

brain we could find no evidence that this additionally relates

directly to macrophage tropism. With further regard to tropism,

Bunnik et al. have reported an association between neutralization

sensitivity and emergence of CXCR4 use [40]. In agreement with

this, clinical progression and coreceptor switch was observed in

one patient (MM8) after neutralization sensitive virus emerged.

However, we observed no evidence of coreceptor switch in the rest

of the cohort. A growth advantage to particular tissue subsets of T

cells, or macrophages, remains a possibility. It is also possible that

neutralization sensitivity has limited effect on replication in an in

vivo compartment where direct cell-to-cell spread could be a

primary mode of transmission.

In summary, with regard to humoral immunity, longitudinal

studies reveal a continually evolving virus that circumvents the

host Nab response [14,15,21,22]. However, the sensitivity or

resistance to neutralization may not only depend on time and the

development of Nabs but also be dependent on location. The

interplay of selective forces for greater virus replication efficiency

resulting in sensitivity to Nabs occurring in a compartment

protected from antibody surveillance could explain the temporal

course described here for the in vivo emergence of HIV-1 variants

with potent sensitivity to Nabs. Further studies are needed to

evaluate this possibility, and define to what extent neutralization

sensitive variants shape the viral quasispecies.

Materials and Methods

Patient cohort and Ethics statement
We analysed HIV-1 Envs derived from seven HIV-1 subtype B

infected men whom presented at a London clinic with symptom-

atic primary HIV infection Blood samples were obtained at

seroconversion and thereafter at regular intervals up to five years

after infection (405–1534 days after onset of symptoms). Recent

HIV-1 infection was diagnosed by the detection of HIV-1

genomes (PBMC proviral DNA or plasma RNA) in the presence,

or absence, of an evolving antibody profile that subsequently

became fully positive (Table S1). All subjects initially declined

antiretroviral therapy and remained treatment naı̈ve throughout

the study. The study protocol was approved by the Camden and

Islington NHS Trust Ethics Committee and written informed

consent obtained from all subjects.

Viruses, sera and MAbs
HIV-1MN and HIV-1IIIB were obtained from the Centralised

Facility for AIDS Reagents (CFAR), National Institute for

Biological Standards and Controls (NIBSC), UK, and propagated

in C8166 and H9 cells, respectively, also obtained from the

CFAR. The 93MW965.26 env clone was provided by D Montefiori

(Duke University Medical Center, USA) through the Compre-

hensive Antibody Vaccine Immune Monitoring Consortium (CA-

VIMC), as part of the Collaboration for AIDS Vaccine Discovery

(CAVD). The PVO.4 env clone [41] was obtained through the

NIH AIDS Research and Reference Reagent Program (USA).

Viruses 93MW965.26 and PVO.4 were produced in 293T/17

cells obtained from the ATCC (LGC Standards, UK) by co-

transfection with their respective plasmid constructs and the

pSG3Denv plasmid (obtained through the NIH AIDS Research

and Reference Reagent Program, [14,42]). MAb IgG1b12 was

kindly provided by D Burton (The Scripps Research Institute,

USA), MAb 17b by R Wyatt (Vaccine Research Center, NIH,

USA) and recombinant sCD4 by I Jones (The University of

Reading, UK). MAb 2G12 was obtained from Polymun Scientific

GmbH, Austria. QC sera 1, 2 and 6 from HIV-1-seropositive

individuals have been described previously [26]. Both the

reference sera and autologous patient sera were heat-inactivated

(56uC, 1 hr) before use.

Amplification of gp120 and generation of infectious
molecular clones

Viral envs from acute/early infection had been amplified from

proviral DNA and infectious molecular clones generated by

inserting the envs into the pHxB2-MCS-D-env vector [16,32]. For

this study additional envs from chronic infection were cloned from

viral RNA by nested reverse-transcriptase polymerase chain

reaction (RT-PCR). Viral RNA was extracted from plasma

(200 ml) using the QIAamp Viral RNA Kit (Qiagen UK), DNAse

I treated (37uC, 1 hr) and a 10th of the RNA was then RT (50uC
30 mins, 60uC 30 mins) and amplified using the Titan One Tube

RT-PCR Kit (Roche Diagnostics GmbH, Germany) with forward

primers 988L+ (59-GTAGCATTAGCGGCCGCAATAATAA-

TAGCAATAG-39) and 943S+ (59-CAATAGYAGCATTAGTA-

GTAG-39) and either reverse primer 609RE- (59-CCCATAGTG-

CTTCCGGCCGCTCCCAAG-39) or 628L- (59-TCATCTAGA-

GATTTATTACTCC-39). For the nested PCR the Expand Long
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Template PCR System (Diagnostics GmbH, Germany) was

employed following the reaction conditions specified by the

manufacturer for buffer 3 and a 10th of the first round product as

template with primers 626L+ (59-GTGGGTCACCGTCTAT-

TATGGG-39) and 125Y-(59-CACCACGCGTCTCTTTGCCT-

TGGTGGG-39), containing BstEII and MluI sites (underlined).

The PCR conditions were: 30 cycles of 92uC 45s, 45 or 50uC for 45s

and 68uC for 210s, finishing with a 10 mins elongation step at 68uC.

The amplified env-fragments were cloned into pCR-TOPO

(Promega, UK) and subsequently transferred into pHxB2-MCS-

D-env, following digestion with BstEII and MluI. Plasmid pHxB2-

MCS-D-env allows incorporation of heterologous env sequences

from seven amino acids after the signal peptide to six amino acids

prior to the gp120/gp41 junction [43]. Viruses were produced by

transfection of 293T cells using FuGENE-HD (Roche Diagnostics,

Indianapolis, USA).

Env sequencing and phylogenetic analysis
Envs were sequenced using the Big Dye Terminator Kit 3.1

(Applied Biosystems, USA) using 3.2 pmol of primer and 500 ng

of plasmid. Both strands were sequenced to give a 2 - 4-fold

redundancy. The sequences and their chromatograms were

assembled into a contig using Sequencher software (Gene Codes

Corp.; USA). The GenBank accession numbers for the envs

are: MM1 AY295200-1-6, DQ425059-61; MM2 AY295211,

DQ425062-66-68; MM4 AY295223-5-6, DQ425069-71, DQ875

805-8; MM8 AY295233-5-7, DQ425072-4, DQ645378-84;

MM23 DQ425077-82, DQ875809-10, GQ304511-7; MM27

DQ425083-8; MM28 DQ425089-92.

Cloned env sequences were manually aligned with 200 HIV-1

subtype B env gene sequences extracted from the Los Alamos

National Laboratory HIV database using the software Se-Al [44].

Hyper-variable regions that could not be unambiguously aligned

were excluded. A maximum-likelihood phylogenetic tree was

constructed under the general time-reversible model of nucleotide

substitution with proportion of invariable sites and gamma-distri-

buted rate heterogeneity (GTR+I+G), using the program PAUP*

version 4.0b10 [45]. The robustness of the tree topology was assessed

by neighbour-joining bootstrap analysis with 1,000 replicates.

Strain specific PCR
Strain specific primers for nested PCR were designed to amplify

,500 bp segments of the env gene of MM239s viruses. The PCRs

were optimised on plasmids encoding strain A and B envs. For

amplification of proviral DNA the Expand Long Template PCR

System (Roche, UK) was employed using 300–600 ng of PBMC

DNA as template in the first PCR reaction, and a 10th of the first

round product for nesting, with buffer 3 and with the following

cycling conditions: 96uC 5 mins, then 30 cycles of 96uC 60 s, 60uC
(outer PCR) or 55uC (inner PCR) 60 s, and 68uC 60 s, finishing

with a 10 mins elongation step at 68uC. For amplification of viral

RNA the Titan One Tube RT-PCR Kit (Roche, UK) was

employed for the RT-step and the first amplification round using

RNA extracted from 20 ml of plasma, and primers 988L+, 943S+
and 609RE- (see Amplification of gp120). A 10th of the RT-PCR

product was then nested with the inner strain specific primers

following the same conditions as for proviral DNA. The strain

identity of the PCR products was confirmed by cycle sequencing

using Big Dye Terminator Kit 3.1 (Applied Biosystems, USA) with

3.2 pmol of primer and 25 ng of agarose gel-purified product.

Virus titrations
Human glioma (NP-2/U87) cells expressing CD4 and a putative

coreceptor (CCR3, CCR5 or CXCR4;) were kindly donated by H

Hoshino (Gunma University School of Medicine, Japan; NP-2 cells

[46,47]) or obtained from CFAR (NIBSC, UK; U87 cells [46,47]),

respectively, and grown in DMEM (Invitrogen, UK) supplemented

with 10% FCS, 1 mg/ml puromycin and 100 mg/ml G418. Ten-

fold serial dilutions of viral stocks were incubated in triplicate for

2 hrs at 37uC on semiconfluent cell layers. The cells were then

washed and cultured for 48 hrs. Infection was detected by p24-

immunostaining, as detailed elsewhere [16,32]. Briefly, fixed cells

were incubated with anti-HIV-1 p24 monoclonal antibodies (ADP

365 and 366, NIBSC, UK; 1:40 dilution) followed by an anti-mouse

Ig antibody conjugated to b-galactosidase (Southern Biotechnology

Associates, USA; at 2.5 mg/ml). After incubation with X-Gal

substrate at 37uC, infected cells appear blue and focus-forming units

(FFU) are counted.

Neutralization assay
Two hundred FFU of HIV-1 were incubated with 2 (or 3)-fold

serially diluted patient serum (from 1:10 or 1:20 dilution) or MAbs

or sCD4 from 15 mg/ml, in a volume of 100 ml of DMEM

supplemented with 10% FCS, for 1 hr at 37uC. As negative

controls, parallel assays were run without antibody or, for serum

assays, with pooled HIV-1 seronegative human serum (PAA

Laboratories, UK) at a 1:10 dilution. MAb 17b was assayed both

in the presence and absence of sCD4 (at a concentration which

reduced infection by 50%). When sCD4 was included, reduction in

infection was calculated against virus incubated with sCD4 alone.

Following the incubation, the antibody-virus cocktail was added to

NP-2/CD4/CCR5 (or NP-2/CD4/CXCR4 for HIV-1MN/IIIB)

cells seeded in 48-well plates. After 2 hrs incubation at 37uC, the

cells were washed and then cultured for 48 hrs. Infection was

measured by p24-immunostaining (see virus titrations). The

percentage infection in the presence of antibody (i.e. patient serum

or MAb) was calculated using the following formula: 1006[average

FFU in the presence of antibody/average FFU in the control]. The

threshold for a positive neutralization reaction with MAbs/sCD4

was set to $50% reduction of infection, with IC50 values being

calculated using the XLFit4 software (ID Business Solutions, UK).

For serum assays, we report the average reciprocal end-point

dilution at which $90% reduction of infection was observed, as the

neutralizing activity of sera that do not achieve reductions in

infection above 90% is intrinsically variable between experiments

[16] Each serum/MAb-virus combination was assayed in triplicate,

at least twice.

Single genome amplification and cloning of gp160
Full-length viral envs (gp160) were amplified by Single Genome

Amplification (SGA) as described by Keele et al., 2008 [29].

Briefly, ,10,000 viral RNA copies were extracted from plasma

using the QIAamp Viral RNA Kit and reverse transcribed (50uC
for 60 mins, 55uC for 60 mins) using (10 units/ml) Super-Script III

(Invitrogen) in the supplied 16 RT buffer with 0.5 mM dNTPs,

5 mM DTT, 2 units/ml RNaseOut (Invitrogen) and 0.25 mM

reverse primer Env3Out (59-TTGCTACTTGTGATTGCTC-

CATGT-39). Following reverse transcription the Super-Script

was heat-inactivated (85uC for 10 mins), and the cDNA was

RNaseH (2 units; Invitrogen) treated at 37uC for 30 mins. The

cDNA was diluted to yield amplification in less than 30% of nested

PCR reactions using High Fidelity Platinum Taq DNA polymerase

(Invitrogen) and primers Env5out (59-TAGAGCCCTGGAAG-

CATCCAGGAAG-39) and Env3out (for outer PCR), followed by

primers Env5in (59- caccTTAGGCATCTCCTATGGCAGGAA-

GAAG-39) and Env3in (59-GTCTCGAGATACTGCTCC-

CACCC-39) for the nested PCR. The PCR amplifications were

carried out in the presence of 16 High Fidelity Platinum PCR
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buffer, 2 mM MgSO4, 0.2 mM dNTPs, 0.2 mM of each primer

and 0.025 units/ml Platinum Taq. The PCR conditions were: 94uC
for 2 mins, followed by 35 (outer PCR) or 45 (nested PCR) cycles

of 94uC for 15 s, 55uC for 30 s and 68uC for 4 mins, finishing with

a 10 mins elongation step at 68uC. All PCR products were

sequenced and any sequence with evidence of mixed bases was

excluded from further analysis. For virus production amplicons

were cloned into pcDNA3.1/V5-His-TOPO-TA (Invitrogen) and

then sequence confirmed (to exclude cloning introduced changes).

Envelope pseudotyped viruses were produced in 293T cells by co-

transfection with the pSG3Denv plasmid [48] using FuGENE-HD

(Roche Diagnostics). The GenBank accession numbers for the

SGA envs are: JN034137-99.

Sequence swapping and site directed mutagenesis
(SDM)

Molecular determinants of neutralization sensitivity was sought

by swapping envelope regions between neutralization sensitive and

resistant clones using the conserved restriction enzyme sites Bgl II

and PpuM I, by Env residues 273 (nt 7041) and 368 (nt 7326;

HXB2 numbering), in combination with the BstE II and Mlu I

sites incorporated in the primers used for gp120 amplification.

This was supplemented by SDM with oligonucleotides encoding

the desired mutations using Pfx DNA polymerase (Invitrogen) in

reactions containing 16Pfx buffer, 50 mM MgCl2, 1 mM dNTPs,

forward and reverse primers at 1 mM, 200 ng plasmid DNA and

0.05 units/ml Pfx. The PCR conditions were: 94uC for 3 mins,

followed by 20 cycles of 94uC for 30 s, 60uC for 30 s and 68uC for

12 mins, finishing with a 20 min elongation step at 68uC. The

template DNA was digested by incubation with Dpn I at 37uC for

2 hours after which the mutated DNA was rescued by transfor-

mation of TOP10 E. coli cells (Invitrogen). Both the swaps and the

SDM was conducted in the pGEM-T easy vector and verified by

sequencing before the mutated envs were transferred into the

pHxB2-MCS-D-env for virus production and re-confirmed by

sequencing.

Macrophage infectivity assay
PBMC were prepared from HIV seronegative donors by

density-gradient centrifugation (Lymphoprep, Axis-Shield). Mono-

cyte-derived macrophages (MDM) were prepared by adherence as

described previously [49], except that cells were harvested and

replated at 26106 cells/ml following the initial overnight

incubation, and left to differentiate for 7–14 days in RPMI 1640

supplemented with 20% autologous human serum and 20 ng/ml

macrophage colony stimulating factor (R&D Systems, UK). Once

differentiated, MDM in 48-well trays (46105 cells/well) were

infected with 500-5,000 FFU viral stock (titred on NP-2 cells) in

200 ml RPMI 1640/20% autologous serum. Media was replaced

after 24 hrs and virus production was detected after four days

following intracellular p24 staining (see virus titrations).

Supporting Information

Figure S1 Amino acid sequence alignments of Envs
amplified by traditional PCR and by SGA. The figure show

amino acid alignments of MM4 day 493 (A) and MM8 day 608 (B)

Envs, with clones derived by single genome amplification (SGA)

labelled accordingly (4.10_SGA1-34; 8.8_SGA1-21). The neutral-

ization phenotype of tested Env clones is indicated by ‘-S’ for

sensitive and ‘-R’ for resistant following the clone name. The

numbering of amino acid residues is according to HIV-1HXB2 and

for clarity only the region of env that is cloned into the pHxB2-

MCS-D-env vector is shown (Env residues 35–504). Dashes (2)

denote sequence identity, while dots (.) represent gaps introduced

to optimise alignments. The hypervariable domains (V1, V2, V3,

V4 and V5) are indicated above the alignments and shaded grey.

All but two of the SGA-derived Envs are unique (MM8 SGA

clones 16 and 17 were identical). The location of the restriction

enzyme sites used for mapping is indicated above the alignments

(and bolded), and also the residues changed by site directed

mutation.

(DOCX)

Table S1 Seroconversion data. a The presence of anti-HIV

antibodies was evaluated using four commercial assays following

the manufacturer’s instructions; Murex HIV-1.2.O (Abbott/

murex), Wellcozyme HIV Recombinant VK 56/57 (Abbott/

murex), Serovida HIV-1/2 (Fujirebio) and VIDAS HIV Duo

(bioMérieux). Numbers refers to days post onset of PHI symptoms.
b Serum samples were considered negative if no reactivity were

detected in any of the assays, or if only VIDAS HIV Duo scored

positive (detects both p24 antigens and anti-HIV antibodies).
c Proviral DNA detectable by nested PCR. d A fully positive

serology refers to a positive score in all four assays, including a

positive score at a reciprocal serum dilution.256 in the Serovida

HIV-1/2 assay. * Infection likely to have occurred within a three

months (MM4 and MM8) and one month (MM23) period,

respectively, with the time-point of the last possible exposure being

indicated.

(DOCX)

Table S2 Patient details – Viral Load, CD4 counts and
env PCR. a Days counted from onset of symptoms characteristic

of primary HIV infection (PHI) illness. b VL, plasma viral load

(RNA copies/ml) determined using Chiron 3.0 (Emeryville, Cal.,

USA). c CD4, CD4 cell numbers (cells/ml). d nd, not determined.
e Source material for env PCR: DNA = PBMC proviral DNA,

RNA = plasma viral RNA.

(DOC)
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