152 research outputs found
Modelo de estudio de dos informativas familias colombianas con sÃndrome de usher
Establecer y evaluar un modelo de abordaje para el estudio del SÃndrome de Usher, que abarca el diagnóstico clÃnico de los pacientes, establecimiento y confirmación del subtipo mediante estudios moleculares y posterior correlación genotipo-fenotipo
Estudio epidemiológico del sÃndrome de waardenburg en colombia
Ampliar los conocimientos clÃnicos y genéticos sobre el SÃndrome de Waardenburg (WS), definiendo la frecuencia de los tipos de sÃndrome y su distribución geográfica en la población sorda colombiana
High-throughput identification of genotype-specific cancer vulnerabilities in mixtures of barcoded tumor cell lines.
Hundreds of genetically characterized cell lines are available for the discovery of genotype-specific cancer vulnerabilities. However, screening large numbers of compounds against large numbers of cell lines is currently impractical, and such experiments are often difficult to control. Here we report a method called PRISM that allows pooled screening of mixtures of cancer cell lines by labeling each cell line with 24-nucleotide barcodes. PRISM revealed the expected patterns of cell killing seen in conventional (unpooled) assays. In a screen of 102 cell lines across 8,400 compounds, PRISM led to the identification of BRD-7880 as a potent and highly specific inhibitor of aurora kinases B and C. Cell line pools also efficiently formed tumors as xenografts, and PRISM recapitulated the expected pattern of erlotinib sensitivity in vivo
Carbohydrate Metabolism Is Essential for the Colonization of Streptococcus thermophilus in the Digestive Tract of Gnotobiotic Rats
Streptococcus thermophilus is the archetype of lactose-adapted bacterium and so far, its sugar metabolism has been mainly investigated in vitro. The objective of this work was to study the impact of lactose and lactose permease on S. thermophilus physiology in the gastrointestinal tract (GIT) of gnotobiotic rats. We used rats mono-associated with LMD-9 strain and receiving 4.5% lactose. This model allowed the analysis of colonization curves of LMD-9, its metabolic profile, its production of lactate and its interaction with the colon epithelium. Lactose induced a rapid and high level of S. thermophilus in the GIT, where its activity led to 49 mM of intra-luminal L-lactate that was related to the induction of mono-carboxylic transporter mRNAs (SLC16A1 and SLC5A8) and p27Kip1 cell cycle arrest protein in epithelial cells. In the presence of a continuous lactose supply, S. thermophilus recruited proteins involved in glycolysis and induced the metabolism of alternative sugars as sucrose, galactose, and glycogen. Moreover, inactivation of the lactose transporter, LacS, delayed S. thermophilus colonization. Our results show i/that lactose constitutes a limiting factor for colonization of S. thermophilus, ii/that activation of enzymes involved in carbohydrate metabolism constitutes the metabolic signature of S. thermophilus in the GIT, iii/that the production of lactate settles the dialogue with colon epithelium. We propose a metabolic model of management of carbohydrate resources by S. thermophilus in the GIT. Our results are in accord with the rationale that nutritional allegation via consumption of yogurt alleviates the symptoms of lactose intolerance
Query Large Scale Microarray Compendium Datasets Using a Model-Based Bayesian Approach with Variable Selection
In microarray gene expression data analysis, it is often of interest to identify genes that share similar expression profiles with a particular gene such as a key regulatory protein. Multiple studies have been conducted using various correlation measures to identify co-expressed genes. While working well for small datasets, the heterogeneity introduced from increased sample size inevitably reduces the sensitivity and specificity of these approaches. This is because most co-expression relationships do not extend to all experimental conditions. With the rapid increase in the size of microarray datasets, identifying functionally related genes from large and diverse microarray gene expression datasets is a key challenge. We develop a model-based gene expression query algorithm built under the Bayesian model selection framework. It is capable of detecting co-expression profiles under a subset of samples/experimental conditions. In addition, it allows linearly transformed expression patterns to be recognized and is robust against sporadic outliers in the data. Both features are critically important for increasing the power of identifying co-expressed genes in large scale gene expression datasets. Our simulation studies suggest that this method outperforms existing correlation coefficients or mutual information-based query tools. When we apply this new method to the Escherichia coli microarray compendium data, it identifies a majority of known regulons as well as novel potential target genes of numerous key transcription factors
Preventable hospitalization and access to primary health care in an area of Southern Italy
<p>Abstract</p> <p>Background</p> <p>Ambulatory care-sensitive conditions (ACSC), such as hypertension, diabetes, chronic heart failure, chronic obstructive pulmonary disease and asthma, are conditions that can be managed with timely and effective outpatient care reducing the need of hospitalization. Avoidable hospitalizations for ACSC have been used to assess access, quality and performance of the primary care delivery system. The aims of this study were to quantify the proportion of avoidable hospital admissions for ACSCs, to identify the related patient's socio-demographic profile and health conditions, to assess the relationship between the primary care access characteristics and preventable hospitalizations, and the usefulness of avoidable hospitalizations for ACSCs to monitor the effectiveness of primary health care.</p> <p>Methods</p> <p>A random sample of 520 medical records of patients admitted to medical wards (Cardiology, Internal Medicine, Pneumology, Geriatrics) of a non-teaching acute care 717-bed hospital located in Catanzaro (Italy) were reviewed.</p> <p>Results</p> <p>A total of 31.5% of the hospitalizations in the sample were judged to be preventable. Of these, 40% were for congestive heart failure, 23.2% for chronic obstructive pulmonary disease, 13.5% for angina without procedure, 8.4% for hypertension, and 7.1% for bacterial pneumonia. Preventable hospitalizations were significantly associated to age and sex since they were higher in older patients and in males. The proportion of patients who had a preventable hospitalization significantly increased with regard to the number of hospital admissions in the previous year and to the number of patients for each primary care physician (PCP), with lower number of PCP accesses and PCP medical visits in the previous year, with less satisfaction about PCP health services, and, finally, with worse self-reported health status and shorter length of hospital stay.</p> <p>Conclusion</p> <p>The findings from this study add to the evidence and the urgency of developing and implementing effective interventions to improve delivery of health care at the community level and provided support to the usefulness of avoidable hospitalizations for ACSCs to monitor this process.</p
HuR/ELAVL1 drives malignant peripheral nerve sheath tumor growth and metastasis
Cancer cells can develop a strong addiction to discrete molecular regulators, which control the aberrant gene expression programs that drive and maintain the cancer phenotype. Here, we report the identification of the RNA-binding protein HuR/ELAVL1 as a central oncogenic driver for malignant peripheral nerve sheath tumors (MPNSTs), which are highly aggressive sarcomas that originate from cells of the Schwann cell lineage. HuR was found to be highly elevated and bound to a multitude of cancer-associated transcripts in human MPNST samples. Accordingly, genetic and pharmacological inhibition of HuR had potent cytostatic and cytotoxic effects on tumor growth, and strongly suppressed metastatic capacity in vivo. Importantly, we linked the profound tumorigenic function of HuR to its ability to simultaneously regulate multiple essential oncogenic pathways in MPNST cells, including the Wnt/β-catenin, YAP/TAZ, RB/E2F, and BET pathways, which converge on key transcriptional networks. Given the exceptional dependency of MPNST cells on HuR for survival, proliferation, and dissemination, we propose that HuR represents a promising therapeutic target for MPNST treatment
Alternative Oxidase Mediates Pathogen Resistance in Paracoccidioides brasiliensis Infection
Thermally dimorphic pathogenic fungi are responsible for potentially life-threatening diseases of immunocompetent and immunocompromised individuals. These microorganisms grow as conidia-producing mycelia in the environment, which when inhaled by the host convert to the pathogenic yeast form at 37°C. During adaptation and growth, fungi interact with host immune cells and must cope with defense mechanisms such as imposed-oxidative stress (e.g., reactive oxygen species; ROS). Alternative oxidase (AOX) is an enzyme recently implicated in the reduction of ROS production by the mitochondria when triggered by external stimuli, such as temperature and ROS. During this work we have evaluated the relevance of AOX during infection with Paracoccidioides brasiliensis, the etiological agent of one of the most prevalent mycoses in Latin America, paracoccidioidomycosis. We show that PbAOX gene expression is stimulated after interaction with alveolar macrophages or in the presence of H2O2 and is essential for survival against fungicidal activity of both the immune cells and the ROS compound. Moreover, decreasing PbAOX gene expression in P. brasiliensis led to increased survival of infected mice. Altogether, our data supports a relevant role for AOX in the virulence of P. brasiliensis
A Communal Bacterial Adhesin Anchors Biofilm and Bystander Cells to Surfaces
While the exopolysaccharide component of the biofilm matrix has been intensively studied, much less is known about matrix-associated proteins. To better understand the role of these proteins, we undertook a proteomic analysis of the V. cholerae biofilm matrix. Here we show that the two matrix-associated proteins, Bap1 and RbmA, perform distinct roles in the biofilm matrix. RbmA strengthens intercellular attachments. In contrast, Bap1 is concentrated on surfaces where it serves to anchor the biofilm and recruit cells not yet committed to the sessile lifestyle. This is the first example of a biofilm-derived, communally synthesized conditioning film that stabilizes the association of multilayer biofilms with a surface and facilitates recruitment of planktonic bystanders to the substratum. These studies define a novel paradigm for spatial and functional differentiation of proteins in the biofilm matrix and provide evidence for bacterial cooperation in maintenance and expansion of the multilayer biofilm
Complete Genome Sequence of the N2-Fixing Broad Host Range Endophyte Klebsiella pneumoniae 342 and Virulence Predictions Verified in Mice
We report here the sequencing and analysis of the genome of the nitrogen-fixing endophyte, Klebsiella pneumoniae 342. Although K. pneumoniae 342 is a member of the enteric bacteria, it serves as a model for studies of endophytic, plant-bacterial associations due to its efficient colonization of plant tissues (including maize and wheat, two of the most important crops in the world), while maintaining a mutualistic relationship that encompasses supplying organic nitrogen to the host plant. Genomic analysis examined K. pneumoniae 342 for the presence of previously identified genes from other bacteria involved in colonization of, or growth in, plants. From this set, approximately one-third were identified in K. pneumoniae 342, suggesting additional factors most likely contribute to its endophytic lifestyle. Comparative genome analyses were used to provide new insights into this question. Results included the identification of metabolic pathways and other features devoted to processing plant-derived cellulosic and aromatic compounds, and a robust complement of transport genes (15.4%), one of the highest percentages in bacterial genomes sequenced. Although virulence and antibiotic resistance genes were predicted, experiments conducted using mouse models showed pathogenicity to be attenuated in this strain. Comparative genomic analyses with the presumed human pathogen K. pneumoniae MGH78578 revealed that MGH78578 apparently cannot fix nitrogen, and the distribution of genes essential to surface attachment, secretion, transport, and regulation and signaling varied between each genome, which may indicate critical divergences between the strains that influence their preferred host ranges and lifestyles (endophytic plant associations for K. pneumoniae 342 and presumably human pathogenesis for MGH78578). Little genome information is available concerning endophytic bacteria. The K. pneumoniae 342 genome will drive new research into this less-understood, but important category of bacterial-plant host relationships, which could ultimately enhance growth and nutrition of important agricultural crops and development of plant-derived products and biofuels
- …