73 research outputs found
Evidence for genetic variance in resistance to tuberculosis in Great Britain and Irish Holstein-Friesian populations
peer-reviewedBackground: Here, we jointly summarise scientific evidence for genetic variation in resistance to infection with Mycobacterium bovis, the primary agent of bovine tuberculosis (TB), provided by two recent and separate studies of Holstein-Friesian dairy cow populations in Great Britain (GB) and Ireland. Methods: The studies quantified genetic variation within archived data from field and abattoir surveillance control programmes within each country. These data included results from the single intradermal comparative tuberculin test (SICTT), abattoir inspection for TB lesions and laboratory confirmation of disease status. Threshold animal models were used to estimate variance components for responsiveness to the SICTT and abattoir confirmed M. bovis infection. The link functions between the observed 0/1 scale and the liability scale were the complementary log-log in the GB, and logit link function in the Irish population. Results and discussion: The estimated heritability of susceptibility to TB, as judged by responsiveness to the SICTT, was 0.16 (0.012) and 0.14 (0.025) in the GB and Irish populations, respectively. For abattoir or laboratory confirmation of infection, estimates were 0.18 (0.044) and 0.18 (0.041) from the GB and the Irish populations, respectively. Conclusions: Estimates were all significantly different from zero and indicate that exploitable variation exists among GB and Irish Holstein Friesian dairy cows for resistance to TB. Epidemiological analysis suggests that factors such as variation in exposure or imperfect sensitivity and specificity would have resulted in underestimation of the true values
A preliminary study of genetic factors that influence susceptibility to bovine tuberculosis in the British cattle herd
Associations between specific host genes and susceptibility to Mycobacterial infections such as tuberculosis have been reported in several species. Bovine tuberculosis (bTB) impacts greatly the UK cattle industry, yet genetic predispositions have yet to be identified. We therefore used a candidate gene approach to study 384 cattle of which 160 had reacted positively to an antigenic skin test (‘reactors’). Our approach was unusual in that it used microsatellite markers, embraced high breed diversity and focused particularly on detecting genes showing heterozygote advantage, a mode of action often overlooked in SNP-based studies. A panel of neutral markers was used to control for population substructure and using a general linear model-based approach we were also able to control for age. We found that substructure was surprisingly weak and identified two genomic regions that were strongly associated with reactor status, identified by markers INRA111 and BMS2753. In general the strength of association detected tended to vary depending on whether age was included in the model. At INRA111 a single genotype appears strongly protective with an overall odds ratio of 2.2, the effect being consistent across nine diverse breeds. Our results suggest that breeding strategies could be devised that would appreciably increase genetic resistance of cattle to bTB (strictly, reduce the frequency of incidence of reactors) with implications for the current debate concerning badger-culling
Recommended from our members
A Multivariate Analysis of United States and Global Real Estate Investment Trusts
Using daily data for the period February 2006 to July 2013 we examine the return and volatility linkages between the two main United States REIT sub-sectors and global linkages between the Americas, Europe and the Asia Pacific regions using the BEKK-GARCH and the DCC-GARCH models. We find that there is no evidence of any volatility spillovers between the US sub-sectors. By contrast, we find evidence of volatility spillovers between the Asia Pacific and the Americas, the Asia Pacific and Europe but no spillovers between the United States and Europe. Our results suggest that the REIT market is becoming increasingly globalized and that investors need to consider time varying volatility and correlations across different regions of the world when forming their optimal portfolio-allocations
Whole Genome Sequencing Reveals Local Transmission Patterns of Mycobacterium bovis in Sympatric Cattle and Badger Populations
Whole genome sequencing (WGS) technology holds great promise as a tool for the forensic epidemiology of bacterial pathogens. It is likely to be particularly useful for studying the transmission dynamics of an observed epidemic involving a largely unsampled ‘reservoir' host, as for bovine tuberculosis (bTB) in British and Irish cattle and badgers. BTB is caused by Mycobacterium bovis, a member of the M. tuberculosis complex that also includes the aetiological agent for human TB. In this study, we identified a spatio-temporally linked group of 26 cattle and 4 badgers infected with the same Variable Number Tandem Repeat (VNTR) type of M. bovis. Single-nucleotide polymorphisms (SNPs) between sequences identified differences that were consistent with bacterial lineages being persistent on or near farms for several years, despite multiple clear whole herd tests in the interim. Comparing WGS data to mathematical models showed good correlations between genetic divergence and spatial distance, but poor correspondence to the network of cattle movements or within-herd contacts. Badger isolates showed between zero and four SNP differences from the nearest cattle isolate, providing evidence for recent transmissions between the two hosts. This is the first direct genetic evidence of M. bovis persistence on farms over multiple outbreaks with a continued, ongoing interaction with local badgers. However, despite unprecedented resolution, directionality of transmission cannot be inferred at this stage. Despite the often notoriously long timescales between time of infection and time of sampling for TB, our results suggest that WGS data alone can provide insights into TB epidemiology even where detailed contact data are not available, and that more extensive sampling and analysis will allow for quantification of the extent and direction of transmission between cattle and badgers
A Genome Wide Association Scan of Bovine Tuberculosis Susceptibility in Holstein-Friesian Dairy Cattle
peer-reviewedBackground: Bovine tuberculosis is a significant veterinary and financial problem in many parts of the world. Although
many factors influence infection and progression of the disease, there is a host genetic component and dissection of this
may enlighten on the wider biology of host response to tuberculosis. However, a binary phenotype of presence/absence of
infection presents a noisy signal for genomewide association study.
Methodology/Principal Findings: We calculated a composite phenotype of genetic merit for TB susceptibility based on
disease incidence in daughters of elite sires used for artificial insemination in the Irish dairy herd. This robust measure was
compared with 44,426 SNP genotypes in the most informative 307 subjects in a genome wide association analysis. Three
SNPs in a 65 kb genomic region on BTA 22 were associated (i.e. p,1025, peaking at position 59588069, p = 4.0261026) with
tuberculosis susceptibility.
Conclusions/Significance: A genomic region on BTA 22 was suggestively associated with tuberculosis susceptibility; it
contains the taurine transporter gene SLC6A6, or TauT, which is known to function in the immune system but has not
previously been investigated for its role in tuberculosis infection
Bovine Tuberculosis Prevalence Survey on Cattle in the Rural Livestock System of Torodi (Niger)
BACKGROUND: Bovine tuberculosis (BTB) is a widespread zoonosis in developing countries but has received little attention in sub-Saharan Africa, especially in Niger. Recent investigations confirmed the high incidence of the disease in cattle slaughtered in an abattoir in Niamey. The fact that most of the animals in which M. bovis has been identified were from the rural area of Torodi implied the existence of a probable source of BTB in this region. This study aimed to determine the prevalence of BTB infection in cattle and to identify risk factors for infection in human and cattle populations in Torodi. METHODS AND PRINCIPAL FINDINGS: A survey was carried out at the level of households keeping livestock (n = 51). The questionnaire was related to the potential risk factors and the presence of clinical signs of TB both in animals and humans. Comparative Intradermal Tuberculin Test was conducted to determine the TB status in cattle (n = 393). The overall apparent individual animal prevalence of tuberculin reactors was 3.6% (CI: 95%, 1.9-5.9), whereas the individual true prevalence was estimated at 0.8% (CI: 95%, 0.0-5.0). Using a multivariate logistic regression analysis and a classification tree analysis, the only household level risk factor that significantly influenced the presence of BTB in cattle was the presence of animals coughing in the herd (OR = 4.7, 95% CI: 1.12-19.71, p-value = 0.034). The lack of the practice of quarantine was borderline significant (OR = 4.2, 95% CI: 0.96-18.40, p-value = 0.056). CONCLUSION/SIGNIFICANCE: The study confirmed that BTB is endemic in cattle in Torodi and the risk of the transmission of the disease to humans is potentially high. For the control of the disease in livestock, slaughtering of infected animals and the compensation of the owners is needed. Collaboration between the veterinary and the medical sectors, in the diagnosis, monitoring, prevention and control of BTB is strongly encouraged
Broad MICA/B expression in the small bowel mucosa: a link between cellular stress and celiac disease
The MICA/B genes (MHC class I chain related genes A and B) encode for non conventional class I HLA molecules which have no role in antigen presentation. MICA/B are up-regulated by different stress conditions such as heat-shock, oxidative stress, neoplasic transformation and viral infection. Particularly, MICA/B are expressed in enterocytes where they can mediate enterocyte apoptosis when recognised by the activating NKG2D receptor present on intraepithelial lymphocytes. This mechanism was suggested to play a major pathogenic role in active celiac disease (CD). Due to the importance of MICA/B in CD pathogenesis we studied their expression in duodenal tissue from CD patients. By immunofluorescence confocal microscopy and flow cytometry we established that MICA/B was mainly intracellularly located in enterocytes. In addition, we identified MICA/B+ T cells in both the intraepithelial and lamina propria compartments. We also found MICA/B+ B cells, plasma cells and some macrophages in the lamina propria. The pattern of MICA/B staining in mucosal tissue in severe enteropathy was similar to that found in in vitro models of cellular stress. In such models, MICA/B were located in stress granules that are associated to the oxidative and ER stress response observed in active CD enteropathy. Our results suggest that expression of MICA/B in the intestinal mucosa of CD patients is linked to disregulation of mucosa homeostasis in which the stress response plays an active role.Fil: Allegretti, Yessica Lorena. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Ciencias Biologicas. Laboratorio de Investigaciones del Sistema Inmune; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Bondar, Constanza María. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Ciencias Biologicas. Laboratorio de Investigaciones del Sistema Inmune; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Guzmán, Luciana. Provincia de Buenos Aires. Ministerio de Salud. Hospital de Niños "Sor María Ludovica" de la Plata; ArgentinaFil: Cueto Rua, Eduardo. Provincia de Buenos Aires. Ministerio de Salud. Hospital de Niños "Sor María Ludovica" de la Plata; ArgentinaFil: Chopita, Nestor. Provincia de Buenos Aires. Hospital Interzonal General de Agudos Gral. San Martin; ArgentinaFil: Fuertes, Mercedes Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; ArgentinaFil: Zwirner, Norberto Walter. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Microbiología; ArgentinaFil: Chirdo, Fernando Gabriel. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Ciencias Biologicas. Laboratorio de Investigaciones del Sistema Inmune; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin
High rate of subclinical chikungunya virus infection and association of neutralizing antibody with protection in a prospective cohort in the Philippines.
BACKGROUND: Chikungunya virus (CHIKV) is a globally re-emerging arbovirus for which previous studies have indicated the majority of infections result in symptomatic febrile illness. We sought to characterize the proportion of subclinical and symptomatic CHIKV infections in a prospective cohort study in a country with known CHIKV circulation. METHODS/FINDINGS: A prospective longitudinal cohort of subjects ≥6 months old underwent community-based active surveillance for acute febrile illness in Cebu City, Philippines from 2012-13. Subjects with fever history were clinically evaluated at acute, 2, 5, and 8 day visits, and at a 3-week convalescent visit. Blood was collected at the acute and 3-week convalescent visits. Symptomatic CHIKV infections were identified by positive CHIKV PCR in acute blood samples and/or CHIKV IgM/IgG ELISA seroconversion in paired acute/convalescent samples. Enrollment and 12-month blood samples underwent plaque reduction neutralization test (PRNT) using CHIKV attenuated strain 181/clone25. Subclinical CHIKV infections were identified by ≥8-fold rise from a baseline enrollment PRNT titer 50 years old. Baseline CHIKV PRNT titer ≥10 was associated with 100% (95%CI: 46.1, 100.0) protection from symptomatic CHIKV infection. Phylogenetic analysis demonstrated Asian genotype closely related to strains from Asia and the Caribbean. CONCLUSIONS: Subclinical infections accounted for a majority of total CHIKV infections. A positive baseline CHIKV PRNT titer was associated with protection from symptomatic CHIKV infection. These findings have implications for assessing disease burden, understanding virus transmission, and supporting vaccine development
Taxonomic and Functional Microbial Signatures of the Endemic Marine Sponge Arenosclera brasiliensis
The endemic marine sponge Arenosclera brasiliensis (Porifera, Demospongiae, Haplosclerida) is a known source of secondary metabolites such as arenosclerins A-C. In the present study, we established the composition of the A. brasiliensis microbiome and the metabolic pathways associated with this community. We used 454 shotgun pyrosequencing to generate approximately 640,000 high-quality sponge-derived sequences (∼150 Mb). Clustering analysis including sponge, seawater and twenty-three other metagenomes derived from marine animal microbiomes shows that A. brasiliensis contains a specific microbiome. Fourteen bacterial phyla (including Proteobacteria, Cyanobacteria, Actinobacteria, Bacteroidetes, Firmicutes and Cloroflexi) were consistently found in the A. brasiliensis metagenomes. The A. brasiliensis microbiome is enriched for Betaproteobacteria (e.g., Burkholderia) and Gammaproteobacteria (e.g., Pseudomonas and Alteromonas) compared with the surrounding planktonic microbial communities. Functional analysis based on Rapid Annotation using Subsystem Technology (RAST) indicated that the A. brasiliensis microbiome is enriched for sequences associated with membrane transport and one-carbon metabolism. In addition, there was an overrepresentation of sequences associated with aerobic and anaerobic metabolism as well as the synthesis and degradation of secondary metabolites. This study represents the first analysis of sponge-associated microbial communities via shotgun pyrosequencing, a strategy commonly applied in similar analyses in other marine invertebrate hosts, such as corals and algae. We demonstrate that A. brasiliensis has a unique microbiome that is distinct from that of the surrounding planktonic microbes and from other marine organisms, indicating a species-specific microbiome
- …