265 research outputs found

    Notch signaling during human T cell development

    Get PDF
    Notch signaling is critical during multiple stages of T cell development in both mouse and human. Evidence has emerged in recent years that this pathway might regulate T-lineage differentiation differently between both species. Here, we review our current understanding of how Notch signaling is activated and used during human T cell development. First, we set the stage by describing the developmental steps that make up human T cell development before describing the expression profiles of Notch receptors, ligands, and target genes during this process. To delineate stage-specific roles for Notch signaling during human T cell development, we subsequently try to interpret the functional Notch studies that have been performed in light of these expression profiles and compare this to its suggested role in the mouse

    Giant coronary artery aneurysms in juvenile polyarteritis nodosa: a case report

    Get PDF
    Juvenile polyarteritis nodosa (PAN) is a rare, necrotizing vasculitis, primarily affecting small to medium-sized muscular arteries. Cardiac involvement amongst patients with PAN is uncommon and reports of coronary artery aneurysms in juvenile PAN are exceedingly rare. We describe a 16 year old girl who presented with fever, arthritis and two giant coronary artery aneurysms, initially diagnosed as atypical Kawasaki disease and treated with IVIG and methylprednisolone. Her persistent fevers, arthritis, myalgias were refractory to treatment, and onset of a vasculitic rash suggested an alternative diagnosis. Based on angiographic abnormalities, polymyalgia, hypertension and skin involvement, this patient met criteria for juvenile PAN. She was treated with six months of intravenous cyclophosphamide and high dose corticosteroids for presumed PAN related coronary vasculitis. Maintenance therapy was continued with azathioprine and the patient currently remains without evidence of active vasculitis. She remains on anticoagulation for persistence of the aneurysms. This case illustrates a rare and unusual presentation of giant coronary artery aneurysms in the setting of juvenile PAN

    Responsiveness to exercise training in juvenile dermatomyositis: a twin case study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Patients with juvenile dermatomyositis (JDM) often present strong exercise intolerance and muscle weakness. However, the role of exercise training in this disease has not been investigated.</p> <p>Purpose</p> <p>this longitudinal case study reports on the effects of exercise training on a 7-year-old patient with JDM and on her unaffected monozygotic twin sister, who served as a control.</p> <p>Methods</p> <p>Both the patient who was diagnosed with JDM as well as her healthy twin underwent a 16-week exercise training program comprising aerobic and strengthening exercises. We assessed one repetition-maximum (1-RM) leg-press and bench-press strength, balance, mobility and muscle function, blood markers of inflammation and muscle enzymes, aerobic conditioning, and disease activity scores. As a result, the healthy child had an overall greater absolute strength, muscle function and aerobic conditioning compared to her JDM twin pair at baseline and after the trial. However, the twins presented comparable relative improvements in 1-RM bench press, 1-RM leg press, VO<sub>2peak</sub>, and time-to-exhaustion. The healthy child had greater relative increments in low-back strength and handgrip, whereas the child with JDM presented a higher relative increase in ventilatory anaerobic threshold parameters and functional tests. Quality of life, inflammation, muscle damage and disease activity scores remained unchanged.</p> <p>Results and Conclusion</p> <p>this was the first report to describe the training response of a patient with non-active JDM following an exercise training regimen. The child with JDM exhibited improved strength, muscle function and aerobic conditioning without presenting an exacerbation of the disease.</p

    PIM2 Induced COX-2 and MMP-9 Expression in Macrophages Requires PI3K and Notch1 Signaling

    Get PDF
    Activation of inflammatory immune responses during granuloma formation by the host upon infection of mycobacteria is one of the crucial steps that is often associated with tissue remodeling and breakdown of the extracellular matrix. In these complex processes, cyclooxygenase-2 (COX-2) plays a major role in chronic inflammation and matrix metalloproteinase-9 (MMP-9) significantly in tissue remodeling. In this study, we investigated the molecular mechanisms underlying Phosphatidyl-myo-inositol dimannosides (PIM2), an integral component of the mycobacterial envelope, triggered COX-2 and MMP-9 expression in macrophages. PIM2 triggers the activation of Phosphoinositide-3 Kinase (PI3K) and Notch1 signaling leading to COX-2 and MMP-9 expression in a Toll-like receptor 2 (TLR2)-MyD88 dependent manner. Notch1 signaling perturbations data demonstrate the involvement of the cross-talk with members of PI3K and Mitogen activated protein kinase pathway. Enforced expression of the cleaved Notch1 in macrophages induces the expression of COX-2 and MMP-9. PIM2 triggered significant p65 nuclear factor -κB (NF-κB) nuclear translocation that was dependent on activation of PI3K or Notch1 signaling. Furthermore, COX-2 and MMP-9 expression requires Notch1 mediated recruitment of Suppressor of Hairless (CSL) and NF-κB to respective promoters. Inhibition of PIM2 induced COX-2 resulted in marked reduction in MMP-9 expression clearly implicating the role of COX-2 dependent signaling events in driving the MMP-9 expression. Taken together, these data implicate PI3K and Notch1 signaling as obligatory early proximal signaling events during PIM2 induced COX-2 and MMP-9 expression in macrophages

    Polymorphisms in the α4 Integrin of Neotropical Primates: Insights for Binding of Natural Ligands and HIV-1 gp120 to the Human α4β7

    Get PDF
    The α4 integrin subunit associates with β7 and β1 and plays important roles in immune function and cell trafficking. The gut-homing receptor α4β7 has been recently described as a new receptor for HIV. Here, we describe polymorphisms of ITGA4 gene in New World primates (NWP), and tested their impact on the binding to monoclonal antibodies, natural ligands (MAdCAM and VCAM), and several gp120 HIV-1 envelope proteins. Genomic DNA of NWP specimens comprising all genera of the group had their exons 5 and 6 (encoding the region of binding to the ligands studied) analyzed. The polymorphisms found were introduced into an ITGA4 cDNA clone encoding the human α4 subunit. Mutant α4 proteins were co-expressed with β7 and were tested for binding of mAbs, MAdCAM, VCAM and gp120 of HIV-1, which was compared to the wild-type (human) α4. Mutant α4 proteins harboring the K201E/I/N substitution had reduced binding of all ligands tested, including HIV-1 gp120 envelopes. The mAbs found with reduced biding included one from which a clinically-approved drug for the treatment of neurological disorders has been derived. α4 polymorphisms in other primate species may influence outcomes in the development and treatment of infectious and autoimmune diseases in humans and in non-human primates

    Involvement of Cyr61 in growth, migration, and metastasis of prostate cancer cells

    Get PDF
    Cyr61 has been reported to participate in the development and progression of various cancers; however, its role in prostate cancer (PCa) still remains poorly understood. In this study, we explored the function of Cyr61 in a series of malignant PCa cell lines, including LnCap, Du145, and PC3. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and crystal violet assays demonstrated that Cyr61 was essential for the proliferation of PCa cells. Soft agar assay and xenograft analysis showed that downregulation of Cyr61 suppressed the tumorigenicity of Du145 cells both in vitro and in vivo. Either silencing the cellular Cyr61 by RNA interference or neutralising the endogenous Cyr61 by antibody inhibited the migration of Du145 cells. In contrast, purified protein of Cyr61 promoted the migration of LnCap cells in a dose-dependent manner. These results suggested that Cyr61 was involved in the migration of PCa cells. We also observed the accumulation of mature focal adhesion complexes associated with the impaired migration through Cyr61 downregulation. Also, further studies showed that Cyr61 regulated the level of activated Rac1 as well as its downstream targets, including phosphorylated JNK, E-cadherin, and p27kip1, which are key molecules involved in cell growth, migration, and invasion. The in vivo mouse tail vein injection experiment revealed that Cyr61 affected the metastatic capacity of Du145 cells, suggesting that Cyr61 was required for prostate tumour metastasis. Altogether, our results demonstrated that Cyr61 played an important role in the tumorigenicity and metastasis of PCa cells, which will benefit the development of therapeutic strategy for PCas

    Parallel Evolution of a Type IV Secretion System in Radiating Lineages of the Host-Restricted Bacterial Pathogen Bartonella

    Get PDF
    Adaptive radiation is the rapid origination of multiple species from a single ancestor as the result of concurrent adaptation to disparate environments. This fundamental evolutionary process is considered to be responsible for the genesis of a great portion of the diversity of life. Bacteria have evolved enormous biological diversity by exploiting an exceptional range of environments, yet diversification of bacteria via adaptive radiation has been documented in a few cases only and the underlying molecular mechanisms are largely unknown. Here we show a compelling example of adaptive radiation in pathogenic bacteria and reveal their genetic basis. Our evolutionary genomic analyses of the α-proteobacterial genus Bartonella uncover two parallel adaptive radiations within these host-restricted mammalian pathogens. We identify a horizontally-acquired protein secretion system, which has evolved to target specific bacterial effector proteins into host cells as the evolutionary key innovation triggering these parallel adaptive radiations. We show that the functional versatility and adaptive potential of the VirB type IV secretion system (T4SS), and thereby translocated Bartonella effector proteins (Beps), evolved in parallel in the two lineages prior to their radiations. Independent chromosomal fixation of the virB operon and consecutive rounds of lineage-specific bep gene duplications followed by their functional diversification characterize these parallel evolutionary trajectories. Whereas most Beps maintained their ancestral domain constitution, strikingly, a novel type of effector protein emerged convergently in both lineages. This resulted in similar arrays of host cell-targeted effector proteins in the two lineages of Bartonella as the basis of their independent radiation. The parallel molecular evolution of the VirB/Bep system displays a striking example of a key innovation involved in independent adaptive processes and the emergence of bacterial pathogens. Furthermore, our study highlights the remarkable evolvability of T4SSs and their effector proteins, explaining their broad application in bacterial interactions with the environment

    Analysis of conservation priorities of Iberoamerican cattle based on autosomal microsatellite markers

    Get PDF
    Articles in International JournalsBackground: Determining the value of livestock breeds is essential to define conservation priorities, manage genetic diversity and allocate funds. Within- and between-breed genetic diversity need to be assessed to preserve the highest intra-specific variability. Information on genetic diversity and risk status is still lacking for many Creole cattle breeds from the Americas, despite their distinct evolutionary trajectories and adaptation to extreme environmental conditions. Methods: A comprehensive genetic analysis of 67 Iberoamerican cattle breeds was carried out with 19 FAOrecommended microsatellites to assess conservation priorities. Contributions to global diversity were investigated using alternative methods, with different weights given to the within- and between-breed components of genetic diversity. Information on Iberoamerican plus 15 worldwide cattle breeds was used to investigate the contribution of geographical breed groups to global genetic diversity. Results: Overall, Creole cattle breeds showed a high level of genetic diversity with the highest level found in breeds admixed with zebu cattle, which were clearly differentiated from all other breeds. Within-breed kinships revealed seven highly inbred Creole breeds for which measures are needed to avoid further genetic erosion. However, if contribution to heterozygosity was the only criterion considered, some of these breeds had the lowest priority for conservation decisions. The Weitzman approach prioritized highly differentiated breeds, such as Guabalá, Romosinuano, Cr. Patagonico, Siboney and Caracú, while kinship-based methods prioritized mainly zebu-related breeds. With the combined approaches, breed ranking depended on the weights given to the within- and between-breed components of diversity. Overall, the Creole groups of breeds were generally assigned a higher priority for conservation than the European groups of breeds. Conclusions: Conservation priorities differed significantly according to the weight given to within- and betweenbreed genetic diversity. Thus, when establishing conservation programs, it is necessary to also take into account other features. Creole cattle and local isolated breeds retain a high level of genetic diversity. The development of sustainable breeding and crossbreeding programs for Creole breeds, and the added value resulting from their products should be taken into consideration to ensure their long-term survival
    corecore