3,018 research outputs found
Solvent-Free Electrolyte for High-Temperature Rechargeable Lithium Metal Batteries
The formation of lithiophobic inorganic solid electrolyte interphase (SEI) on Li anode and cathode electrolyte interphase (CEI) on the cathode is beneficial for high-voltage Li metal batteries. However, in most liquid electrolytes, the decomposition of organic solvents inevitably forms organic components in the SEI and CEI. In addition, organic solvents often pose substantial safety risks due to their high volatility and flammability. Herein, an organic-solvent-free eutectic electrolyte based on low-melting alkali perfluorinated-sulfonimide salts is reported. The exclusive anion reduction on Li anode surface results in an inorganic, LiF-rich SEI with high capability to suppress Li dendrite, as evidenced by the high Li plating/stripping CE of 99.4% at 0.5 mA cm−2 and 1.0 mAh cm−2, and 200-cycle lifespan of full LiNi0.8Co0.15Al0.05O2 (2.0 mAh cm−2) || Li (20 µm) cells at 80 °C. The proposed eutectic electrolyte is promising for ultrasafe and high-energy Li metal batteries
Reactive oxygen-related diseases: therapeutic targets and emerging clinical indications
SIGNIFICANCE
Enhanced levels of reactive oxygen species (ROS) have been associated with different disease states. Most attempts to validate and exploit these associations by chronic antioxidant therapies have provided disappointing results. Hence, the clinical relevance of ROS is still largely unclear.
RECENT ADVANCES
We are now beginning to understand the reasons for these failures, which reside in the many important physiological roles of ROS in cell signaling. To exploit ROS therapeutically, it would be essential to define and treat the disease-relevant ROS at the right moment and leave physiological ROS formation intact. This breakthrough seems now within reach.
CRITICAL ISSUES
Rather than antioxidants, a new generation of protein targets for classical pharmacological agents includes ROS-forming or toxifying enzymes or proteins that are oxidatively damaged and can be functionally repaired.
FUTURE DIRECTIONS
Linking these target proteins in future to specific disease states and providing in each case proof of principle will be essential for translating the oxidative stress concept into the clinic. Antioxid. Redox Signal. 23, 1171-1185
Simultaneous Extraction of the Fermi constant and PMNS matrix elements in the presence of a fourth generation
Several recent studies performed on constraints of a fourth generation of
quarks and leptons suffer from the ad-hoc assumption that 3 x 3 unitarity holds
for the first three generations in the neutrino sector. Only under this
assumption one is able to determine the Fermi constant G_F from the muon
lifetime measurement with the claimed precision of G_F = 1.16637 (1) x 10^-5
GeV^-2. We study how well G_F can be extracted within the framework of four
generations from leptonic and radiative mu and tau decays, as well as from K_l3
decays and leptonic decays of charged pions, and we discuss the role of lepton
universality tests in this context. We emphasize that constraints on a fourth
generation from quark and lepton flavour observables and from electroweak
precision observables can only be obtained in a consistent way if these three
sectors are considered simultaneously. In the combined fit to leptonic and
radiative mu and tau decays, K_l3 decays and leptonic decays of charged pions
we find a p-value of 2.6% for the fourth generation matrix element |U_{e 4}|=0
of the neutrino mixing matrix.Comment: 19 pages, 3 figures with 16 subfigures, references and text added
refering to earlier related work, figures and text in discussion section
added, results and conclusions unchange
Gas accretion as the origin of chemical abundance gradients in distant galaxies
It has recently been suggested that galaxies in the early Universe can grow
through the accretion of cold gas, and that this may have been the main driver
of star formation and stellar mass growth. Because the cold gas is essentially
primordial, it has a very low abundance of elements heavier than helium
(metallicity). As it is funneled to the centre of a galaxy, it will lead the
central gas having an overall lower metallicity than gas further from the
centre, because the gas further out has been enriched by supernovae and stellar
winds, and not diluted by the primordial gas. Here we report chemical
abundances across three rotationally-supported star-forming galaxies at z~3,
only 2 Gyr after the Big Bang. We find an 'inverse' gradient, with the central,
star forming regions having a lower metallicity than less active ones, opposite
to what is seen in local galaxies. We conclude that the central gas has been
diluted by the accretion of primordial gas, as predicted by 'cold flow' models.Comment: To Appear in Nature Oct 14, 2010; Supplementary Information included
her
Multiphoton Absorption Stimulated Metal Chalcogenide Quantum Dot Solar Cells under Ambient and Concentrated Irradiance
Colloidal metal chalcogenide quantum dots (QDs) have excellent quantum efficiency in light–matter interactions and good device stability. However, QDs have been brought to the forefront as viable building blocks in bottom‐up assembling semiconductor devices, the development of QD solar cell (QDSC) is still confronting considerable challenges compared to other QD technologies due to their low performance under natural sunlight, as a consequence of untapped potential from their quantized density‐of‐state and inorganic natures. This report is designed to address this long‐standing challenge by accessing the feasibility of using QDSC for indoor and concentration PV (CPV) applications. This work finds that above bandgap photon energy irradiation of QD solids can generate high densities of excitons via multi‐photon absorption (MPA), and these excitons are not limited to diffuse by Auger recombination up to 1.5 × 1019 cm−3 densities. Based on these findings, a 19.5% (2000 lux indoor light) and an 11.6% efficiency (1.5 Suns) have been facilely realized from ordinary QDSCs (9.55% under 1 Sun). To further illustrate the potential of the MPA in QDSCs, 21.29% efficiency polymer lens CPVs (4.08 Suns) and viable sensor networks powered by indoor QDSCs matrix have been demonstrated
Small RNA analysis in Sindbis virus infected human HEK293 cells
In contrast to the defence mechanism of RNA interference (RNAi) in plants and invertebrates, its role in the innate response to virus infection of mammals is a matter of debate. Since RNAi has a well-established role in controlling infection of the alphavirus Sindbis virus (SINV) in insects, we have used this virus to investigate the role of RNAi in SINV infection of human cells
真实性抑或现实性:有关历史剧讨论的讨论
Studies have been performed on the radiation hardness of the type of VCSELs**2 Vertical Cavity Surface Emitting Lasers. that will be used in the ATLAS SemicConductor Tracker. The measurements were made using 30 MeV proton beams, 24 GeV/c proton beams and a gamma source. The lifetime of the devices after irradiation was studied
Monolithically multi-color lasing from an InGaN microdisk on a Si substrate
An optically pumped multi-color laser has been achieved using an InGaN/GaN based micro-disk with an undercut structure on a silicon substrate. The micro-disk laser has been fabricated by means of a combination of a cost-effective microsphere lithography technique and subsequent dry/wet etching processes. The microdisk laser is approximately 1 μm in diameter. The structure was designed in such a way that the vertical components of the whispering gallery (WG) modes formed can be effectively suppressed. Consequently, three clean lasing peaks at 442 nm, 493 nm and 522 nm have been achieved at room temperature by simply using a continuous-wave diode laser as an optical pumping source. Time–resolved micro photoluminescence (PL) measurements have been performed in order to further confirm the lasing by investigating the excitonic recombination dynamics of these lasing peaks. A three dimensional finite-difference-time-domain (FDTD) simulation has been used for the structure design
Quantification Bias Caused by Plasmid DNA Conformation in Quantitative Real-Time PCR Assay
Quantitative real-time PCR (qPCR) is the gold standard for the quantification of specific nucleic acid sequences. However, a serious concern has been revealed in a recent report: supercoiled plasmid standards cause significant over-estimation in qPCR quantification. In this study, we investigated the effect of plasmid DNA conformation on the quantification of DNA and the efficiency of qPCR. Our results suggest that plasmid DNA conformation has significant impact on the accuracy of absolute quantification by qPCR. DNA standard curves shifted significantly among plasmid standards with different DNA conformations. Moreover, the choice of DNA measurement method and plasmid DNA conformation may also contribute to the measurement error of DNA standard curves. Due to the multiple effects of plasmid DNA conformation on the accuracy of qPCR, efforts should be made to assure the highest consistency of plasmid standards for qPCR. Thus, we suggest that the conformation, preparation, quantification, purification, handling, and storage of standard plasmid DNA should be described and defined in the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) to assure the reproducibility and accuracy of qPCR absolute quantification
Genetic and Mechanistic Evaluation for the Mixed-Field Agglutination in B3 Blood Type with IVS3+5G>A ABO Gene Mutation
Background: The ABO blood type B3 is the most common B subtype in the Chinese population with a frequency of 1/900. Although IVS3+5G.A (rs55852701) mutation of B gene has been shown to associate with the development of B3 blood type, genetic and mechanistic evaluation for the unique mixed-field agglutination phenotype has not yet been completely addressed. Methodology/Principal Findings: In this study, we analyzed 16 cases of confirmed B3 individuals and found that IVS3+5G.A attributes to all cases of B3. RT-PCR analyses revealed the presence of at least 7 types of aberrant B3 splicing transcripts with most of the transcripts causing early termination and producing non-functional protein during translation. The splicing transcript without exon 3 that was predicted to generate functional B3 glycosyltransferase lacking 19 amino acids at the N-terminal segment constituted only 0.9 % of the splicing transcripts. Expression of the B3 cDNA with exon 3 deletion in the K562 erythroleukemia cells revealed that the B3 glycosyltransferase had only 40 % of B1 activity in converting H antigen to B antigen. Notably, the typical mixed-field agglutination of B3-RBCs can be mimicked by adding anti-B antibody to the K562-B3 cells. Conclusions/Significance: This study thereby demonstrates that both aberrant splicing of B transcripts and the reduced B3 glycosyltransferase activity contribute to weak B expression and the mixed-field agglutination of B3, adding to th
- …