24 research outputs found

    Impact of TGF-ß1 -509C/T and 869T/C polymorphisms on glioma risk and patient prognosis

    Get PDF
    Transforming growth factor beta (TGF-ß) plays an important role in carcinogenesis. Two polymorphisms in the TGF-ß1 gene (-509C/T and 869T/C) were described to influence susceptibility to gastric and breast cancers. The 869T/C polymorphism was also associated with overall survival in breast cancer patients. In the present study, we investigated the relevance of these TGF-ß1 polymorphism in glioma risk and prognosis. A case-control study that included 114 glioma patients and 138 cancer-free controls was performed. Single nucleotide polymorphisms (SNPs) were evaluated by polymerase chain reaction followed by restriction fragment length polymorphism (PCR-RFLP). Univariate and multivariate logistic regression analyses were used to calculate odds ratio (OR) and 95 % confidence intervals (95 % CI). The influence of TGF-ß1 -509C/T and 869T/C polymorphisms on glioma patient survival was evaluated by a Cox regression model adjusted for patients' age and sex and represented in Kaplan-Meier curves. Our results demonstrated that TGF-ß1 gene polymorphisms -509C/T and 869T/C are not significantly associated with glioma risk. Survival analyses showed that the homozygous -509TT genotype associates with longer overall survival of glioblastoma (GBM) patients when compared with patients carrying CC + CT genotypes (OR, 2.41; 95 % CI, 1.06-5.50; p = 0.036). In addition, the homozygous 869CC genotype is associated with increased overall survival of GBM patients when compared with 869TT + TC genotypes (OR, 2.62; 95 % CI, 1.11-6.17; p = 0.027). In conclusion, this study suggests that TGF-ß1 -509C/T and 869T/C polymorphisms are not significantly associated with risk for developing gliomas but may be relevant prognostic biomarkers in GBM patients.This work was supported by Fundação para a Ciência e Tecnologia, Portugal (PTDC/SAU-GMG/113795/2009 and SFRH/BPD/33612/2009 to B.M.C.; SFRH/BD/88121/2012 to J.V.C.; SFRH/BD/92786/2013 to C.S.G.; PTDC/SAU-ONC/115513/2009 to R.R.)

    Human subcortical brain asymmetries in 15,847 people worldwide reveal effects of age and sex

    Get PDF
    The two hemispheres of the human brain differ functionally and structurally. Despite over a century of research, the extent to which brain asymmetry is influenced by sex, handedness, age, and genetic factors is still controversial. Here we present the largest ever analysis of subcortical brain asymmetries, in a harmonized multi-site study using meta-analysis methods. Volumetric asymmetry of seven subcortical structures was assessed in 15,847 MRI scans from 52 datasets worldwide. There were sex differences in the asymmetry of the globus pallidus and putamen. Heritability estimates, derived from 1170 subjects belonging to 71 extended pedigrees, revealed that additive genetic factors influenced the asymmetry of these two structures and that of the hippocampus and thalamus. Handedness had no detectable effect on subcortical asymmetries, even in this unprecedented sample size, but the asymmetry of the putamen varied with age. Genetic drivers of asymmetry in the hippocampus, thalamus and basal ganglia may affect variability in human cognition, including susceptibility to psychiatric disorders

    Valorisation of Biowastes for the Production of Green Materials Using Chemical Methods

    Get PDF
    With crude oil reserves dwindling, the hunt for a sustainable alternative feedstock for fuels and materials for our society continues to expand. The biorefinery concept has enjoyed both a surge in popularity and also vocal opposition to the idea of diverting food-grade land and crops for this purpose. The idea of using the inevitable wastes arising from biomass processing, particularly farming and food production, is, therefore, gaining more attention as the feedstock for the biorefinery. For the three main components of biomass—carbohydrates, lipids, and proteins—there are long-established processes for using some of these by-products. However, the recent advances in chemical technologies are expanding both the feedstocks available for processing and the products that be obtained. Herein, this review presents some of the more recent developments in processing these molecules for green materials, as well as case studies that bring these technologies and materials together into final products for applied usage

    IL-10 and TNF-α polymorphisms and the recovery from HCV infection

    No full text
    Hepatitis C virus (HCV) infection becomes chronic in about 85% of infected individuals, whereas only 15% of infected people clear spontaneously the virus. It is conceivable that the host immunogenetic background influences the course of infection in term of recovery. Thus, in this study we have evaluated the effect of functionally relevant polymorphisms at tumor necrosis factor-α (TNFα, i.e., 2 biallelic polymorphisms at nt -863 and nt-308 of the promoter) and interleukin-10 (IL-10) loci (i.e., 1 biallelic polymorphism at nt -1082 of the promoter), on the clearance of HCV infection. To this purpose, we compared 18 Sicilian patients who had spontaneously recovered from previous HCV infection with 42 Sicilian patients with current HCV infection and 135 Sicilian healthy patients. The results demonstrate a decreased frequency of the -863CC TNF-α promoter genotype (involved in high production of this pro-inflammatory cytokine) and an increased frequency of the -1082GG IL-10 promoter genotype (involved in high production of this anti-inflammatory cytokine) in patients recovered from HCV infection. The evaluation of combined TNF-α and IL-10 genotypes revealed a significant increase of the “anti-inflammatory genotype” (low-TNF/high-IL-10 producers) in resolved HCV infection group compared with patients with persistent HCV infection. On the whole, our findings suggest that a genetically determined control of the HCV-induced inflammatory response may play a role in the resolution of HCV infectio
    corecore