1,353 research outputs found

    Specialty Preference Among Medical Students and Factors Affecting It

    Get PDF
    Introduction: Medical education is one of the core part of educational system of any country. Medical education requires undergraduate students to study a wide range of medical specialties. It is often assumed that students do not make their career preferences until after they have graduated from medical school. So the reasons and factors responsible for preferences need to be found out among medical students. Material and Methods: It was a Cross sectional study on 180 medical students to assess preference for specialty and factors responsible. Results: Out of total 190 medical students more or less everyone (97.89%) wanted to pursue specialization and majority of them (96.84%) wanted to pursue the same in Medical Field(p>0.05). majority of male students were interested to pursue their specialization in the field of medicine (37.63%), surgery (23.65%) and pediatrics (13.97%). On the other hand female students were more interested in medicine (24.17%), pediatrics (32.96%) and obstetrics & gynecology (24.17%)(p<0.05). Interest, by far was found to be most common factor (76.63%) responsible for the preference of particular medical specialty among all four groups of students (1st professional-25.27%, 2nd professional-75.92%, final professional-89.47%, interns-68.42%).Conclusion: It is thus concluded there are many factors playing role in the specialty selection and preference among the medical students and should be equally justified and addressed

    Cloning and characterization of cDNA encoding xyloglucan endotransglucosylase in Pennisetum glaucum L.

    Get PDF
    Biomass production in plant is directly related to the amount of intercepted solar radiation by the canopy and available water to the plant. Growth and development of leaves, especially under drought condition, is therefore major determinant of crop productivity. Xyloglucan endotransglucosylase (XET) plays important role in growth and development of plants. XETs are a family of enzymes that mediate construction and restructuring of xyloglucan cross-links, thereby controlling the mechanical properties of cell wall. We cloned complete cDNA of an XET from pearl millet (Pennisetum glaucum L.) and characterized it using in silico comparative genomics and activity assays. The cloned cDNA was 1266 bp in length, encoding a protein with 291 amino acids having signal peptide targeting it to the cell wall. The protein showed xyloglucan endotransglucosylase activity but no hydrolytic activity, therefore, named as PgXET1 as per the convention. The comparative genomics revealed that the functional sites of the enzyme (XET) were highly conserved. Evolutionary studies using phylogenetic tree indicated its grouping with XETs from maize (with &gt;95% bootstrap support), barley, rice, etc. This is the first report on cloning and characterization of an XET (PgXET1) from pearl millet, an important dual-purpose crop.Key words: Xyloglucan endotransglucosylase, Pennisetum glaucum, pearl millet, primary cell wall, cell expansion, drought tolerance

    Characterisation of atmospheric aerosol by SEM-EDX and Ion-chromatography techniques for eastern Indo-Gangetic plain location, Varanasi, India

    Get PDF
    Atmospheric aerosol consists of both natural and anthropogenic origin. Studies have shown that continuous exposure to these particles is associated with a high percentage of death from respiratory and cardiovascular disease. In the present study, we have first time used both SEM-EDX analysis as well as chemical analysis to understand the differences in morphology and elemental composition of aerosols sample from a suburban clean and green area of Banaras Hindu University campus and some much polluted urban areas of the Varanasi city situated in the eastern Indo-Gangetic plain. The analysis was done by using scanning electron microscope (SEM) coupled with energy dispersive X-ray microanalyzer (EDX) and ionchromatography (IC). Analyses show that C, Ca, Na, S, Si, Al have dominated the sample

    Association of in Utero Organophosphate Pesticide Exposure and Fetal Growth and Length of Gestation in an Agricultural Population

    Get PDF
    Although pesticide use is widespread, little is known about potential adverse health effects of in utero exposure. We investigated the effects of organophosphate pesticide exposure during pregnancy on fetal growth and gestational duration in a cohort of low-income, Latina women living in an agricultural community in the Salinas Valley, California. We measured nonspecific metabolites of organophosphate pesticides (dimethyl and diethyl phosphates) and metabolites specific to malathion (malathion dicarboxylic acid), chlorpyrifos [O,O-diethyl O-(3,5,6-trichloro-2-pyridinyl) phosphoro-thioate], and parathion (4-nitrophenol) in maternal urine collected twice during pregnancy. We also measured levels of cholinesterase in whole blood and butyryl cholinesterase in plasma in maternal and umbilical cord blood. We failed to demonstrate an adverse relationship between fetal growth and any measure of in utero organophosphate pesticide exposure. In fact, we found increases in body length and head circumference associated with some exposure measures. However, we did find decreases in gestational duration associated with two measures of in utero pesticide exposure: urinary dimethyl phosphate metabolites [β(adjusted) = −0.41 weeks per log(10) unit increase; 95% confidence interval (CI), (−)0.75–(−)0.02; p = 0.02], which reflect exposure to dimethyl organophosphate compounds such as malathion, and umbilical cord cholinesterase (β(adjusted) = 0.34 weeks per unit increase; 95% CI, 0.13–0.55; p = 0.001). Shortened gestational duration was most clearly related to increasing exposure levels in the latter part of pregnancy. These associations with gestational age may be biologically plausible given that organophosphate pesticides depress cholinesterase and acetylcholine stimulates contraction of the uterus. However, despite these observed associations, the rate of preterm delivery in this population (6.4%) was lower than in a U.S. reference population

    Challenges and opportunities associated with waste management in India

    Get PDF
    India faces major environmental challenges associated with waste generation and inadequate waste collection, transport, treatment and disposal. Current systems in India cannot cope with the volumes of waste generated by an increasing urban population, and this impacts on the environment and public health. The challenges and barriers are significant, but so are the opportunities. This paper reports on an international seminar on ‘Sustainable solid waste management for cities: opportunities in South Asian Association for Regional Cooperation (SAARC) countries’ organized by the Council of Scientific and Industrial Research-National Environmental Engineering Research Institute and the Royal Society. A priority is to move from reliance on waste dumps that offer no environmental protection, to waste management systems that retain useful resources within the economy. Waste segregation at source and use of specialized waste processing facilities to separate recyclable materials has a key role. Disposal of residual waste after extraction of material resources needs engineered landfill sites and/or investment in waste-to-energy facilities. The potential for energy generation from landfill via methane extraction or thermal treatment is a major opportunity, but a key barrier is the shortage of qualified engineers and environmental professionals with the experience to deliver improved waste management systems in India

    Therapeutic Radionuclides: Making the Right Choice

    Full text link
    Recently, there has been a resurgence of interest in nuclear medicine therapeutic procedures. Using unsealed sources for therapy is not a new concept; it has been around since the beginnings of nuclear medicine. Treatment of thyroid disorders with radioiodine is a classic example. The availability of radionuclides with suitable therapeutic properties for specific applications, as well as methods for their selective targeting to diseased tissue have, however, remained the main obstacles for therapy to assume a more widespread role in nuclear medicine. Nonetheless, a number of new techniques that have recently emerged, (e.g., tumor therapy with radiolabeled monoclonal antibodies, treatment of metastatic bone pain, etc.) appear to have provided a substantial impetus to research on production of new therapeutic radionuclides. Although there are a number of new therapeutic approaches requiring specific radionuclides, only selected broad areas will be used as examples in this article

    Extreme rainfall events alter the trophic structure in bromeliad tanks across the Neotropics

    Get PDF
    Changes in global and regional precipitation regimes are among the most pervasive components of climate change. Intensification of rainfall cycles, ranging from frequent downpours to severe droughts, could cause widespread, but largely unknown, alterations to trophic structure and ecosystem function. We conducted multi-site coordinated experiments to show how variation in the quantity and evenness of rainfall modulates trophic structure in 210 natural freshwater microcosms (tank bromeliads) across Central and South America (18°N to 29°S). The biomass of smaller organisms (detritivores) was higher under more stable hydrological conditions. Conversely, the biomass of predators was highest when rainfall was uneven, resulting in top-heavy biomass pyramids. These results illustrate how extremes of precipitation, resulting in localized droughts or flooding, can erode the base of freshwater food webs, with negative implications for the stability of trophic dynamics

    Climate influences the response of community functional traits to local conditions in bromeliad invertebrate communities

    Get PDF
    Functional traits determine an organism's performance in a given environment and as such determine which organisms will be found where. Species respond to local conditions, but also to larger scale gradients, such as climate. Trait ecology links these responses of species to community composition and species distributions. Yet, we often do not know which environmental gradients are most important in determining community trait composition at either local or biogeographical scales, or their interaction. Here we quantify the relative contribution of local and climatic conditions to the structure and composition of functional traits found within bromeliad invertebrate communities. We conclude that climate explains more variation in invertebrate trait composition within bromeliads than does local conditions. Importantly, climate mediated the response of traits to local conditions; for example, invertebrates with benthic life‐history traits increased with bromeliad water volume only under certain precipitation regimes. Our ability to detect this and other patterns hinged on the compilation of multiple fine‐grained datasets, allowing us to contrast the effect of climate versus local conditions. We suggest that, in addition to sampling communities at local scales, we need to aggregate studies that span large ranges in climate variation in order to fully understand trait filtering at local, regional and global scales
    corecore