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Abstract
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1 Introduction
Let �p denote the class of functions f of the form

f (z) = z–p +
∞∑

n=–p

anzn, (.)

which are analytic in the punctured open unit disk

U
∗ :=

{
z : z ∈C and  < |z| < 

}
=:U \ {}.

Let P denote the class of functions p given by

p(z) =  +
∞∑
n=

pnzn (z ∈U),

which are analytic in U and satisfy the condition

�(
p(z)

)
>  (z ∈U).

A function f ∈ �p is said to be in the class MSp(α) of meromorphic p-valent starlike
functions of order α if it satisfies the inequality

�
(
zf ′(z)
f (z)

)
< –α (z ∈U; � α < p). (.)
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Moreover, a function f ∈ �p is said to be in the class MKp(α) of meromorphic p-valent
convex functions of order α if it satisfies the inequality

�
(
 +

zf ′′(z)
f ′(z)

)
< –α (z ∈U; � α < p). (.)

It is readily verified from (.) and (.) that

f ∈MKp(α) ⇐⇒ –
zf ′

p
∈MS∗

p(α).

In [], Wang et al. introduced and investigated two new subclasses of the class �p.
A function f ∈ �p is said to be in the classMp(β) if it is characterized by the condition

�
(
zf ′(z)
f (z)

)
> –β (z ∈U;β > p).

Also, a function f ∈ �p is said to be in the classNp(β) if and only if

�
(
 +

zf ′′(z)
f ′(z)

)
> –β (z ∈U;β > p).

Let Ap be the class of functions of the form

f (z) = zp +
∞∑

n=p+

anzn

which are analytic in U. If it satisfies the condition

�
(
eiα

zf ′(z)
f (z)

)
< β

(
z ∈U; –

π


< α <

π


;β > p cosα

)
,

then we say that f ∈ Sp(α,β). Furthermore, let Cp(α,β) denote the subclass ofAp consist-
ing of functions which satisfy the inequality

�
(
eiα

(
 +

zf ′′(z)
f ′(z)

))
< β

(
z ∈U; –

π


< α <

π


;β > p cosα

)
.

The function classes Sp(α,β) and Cp(α,β) were introduced and studied recently by Uyanik
et al. [].
Motivated essentially by the above mentioned work, we introduce and investigate the

following two subclasses of the class �p of meromorphic functions.

Definition  A function f ∈ �p is said to be in the classMSp(α,β) if it satisfies the con-
dition

�
(
eiα

zf ′(z)
f (z)

)
> –β (z ∈U) (.)
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for some real α and β , where (and throughout this paper unless otherwise mentioned) the
parameters α and β are constrained as follows:

|α| < π


and β > p cosα.

Furthermore, a function f ∈ �p is said to be in the class MCp(α,β) if it satisfies the in-
equality

�
(
eiα

(
 +

zf ′′(z)
f ′(z)

))
> –β (z ∈U). (.)

Remark  Taking α = , we get the function classes introduced by Wang et al. [].

Remark  We note that f ∈MSp(α,β) if and only if

–eiα
zf ′(z)
f (z)

≺ peiα – (β – pe–iα)z
 – z

. (.)

Also, f ∈MCp(α,β) if and only if

–eiα
(
 +

zf ′′(z)
f ′(z)

)
≺ peiα – (β – pe–iα)z

 – z
. (.)

For some investigations ofmeromorphic functions, see (for example) theworks [, –]
and the references cited in.
In the present paper, we aim at proving some interesting properties such as integral rep-

resentations and coefficient inequalities of the function classesMSp(α,β) andMCp(α,β).

2 Main results
We begin by presenting an integral representation of functions belonging to the class
MSp(α,β).

Theorem  Let f ∈MSp(α,β). Then

f (z) = z–p · exp
(
(β – p cosα)e–iα

∫ z



ω(t)
t( –ω(t))

dt
) (

z ∈U
∗), (.)

where ω is analytic in U with ω() =  and |ω(z)| < .

Proof For f ∈MSp(α,β), we know that (.) holds true. It follows that

–eiα
zf ′(z)
f (z)

= peiα –
(β – p cosα)ω(z)

 –ω(z)
, (.)

where ω is analytic in U with ω() =  and |ω(z)| < . We next find from (.) that

f ′(z)
f (z)

+
p
z
=
(β – p cosα)e–iαω(z)

z( –ω(z))
(
z ∈ U

∗), (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/336
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which, upon integration, yields

log
(
zpf (z)

)
= (β – p cosα)e–iα

∫ z



ω(t)
t( –ω(t))

dt. (.)

The assertion (.) of Theorem  can be easily derived from (.). �

Note that f ∈MSp(α,β) if and only if

–
zf ′(z)
p

∈MCp(α,β),

we get the following result.

Corollary  Let f ∈MCp(α,β). Then

f (z) = –p
∫ z

z
u–p– · exp

(
(β – p cosα)e–iα

∫ u



ω(t)
t( –ω(t))

dt
)
du

(
z ∈U

∗),
where ω is analytic in U with ω() =  and |ω(z)| < .

Next, we discuss the coefficient estimates of functions belonging to the classes
MSp(α,β) and MCp(α,β). The following lemma will be required in the proof of The-
orem .

Lemma  Let p ∈N. Suppose also that the sequence {Ap+m}∞m= is defined by

⎧⎨
⎩Ap = β–p cosα

p (m = ),

Ap+m = (β–p cosα)
p+m ( +

∑m–
k= Ap+k) (m ∈ N).

(.)

Then

Ap+m =
(β – p cosα)

β +m + p – p cosα

m∏
k=

β + k + p – p cosα
p + k

(
m ∈N :=N∪ {}). (.)

Proof By virtue of (.), we get

(p +m + )Ap+m+ = (β – p cosα)

(
 +

m∑
k=

Ap+k

)
, (.)

and

(p +m)Ap+m = (β – p cosα)

(
 +

m–∑
k=

Ap+k

)
. (.)

Combining (.) and (.), we find that

Ap+m+

Ap+m
=
β +m + p – p cosα

p +m + 
(m ∈N). (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/336
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Thus,

Ap+m =
Ap+m

Ap+m–
· Ap+m–

Ap+m–
· · · Ap+

Ap
·Ap

=
β +m –  + p – p cosα

p +m
· · · β + p – p cosα

p + 
· β – p cosα

p

=
(β – p cosα)

β +m + p – p cosα

m∏
k=

β + k + p – p cosα
p + k

(m ∈N). (.)

The proof of Lemma  is thus completed. �

Theorem  Let f (z) = z–p +
∑∞

m= ap+mzp+m ∈MSp(α,β). Then

|ap+m|� (β – p cosα)
β +m + p – p cosα

m∏
k=

β + k + p – p cosα
p + k

(m ∈N). (.)

Proof Let

h(z) :=
β + eiα zf ′(z)

f (z) + ip sinα

β – p cosα
(
z ∈U; f ∈MSp(α,β)

)
. (.)

We know that h ∈P . It follows that

eiαzf ′(z) = (β – p cosα)f (z)h(z) – (β + ip sinα)f (z). (.)

Suppose that

h(z) =  + hz + hz + · · · . (.)

Then

eiα
(
–pz–p + papzp + (p + )ap+zp+ + · · · + (p +m)ap+mzp+m + · · · )
= (β – p cosα)

(
z–p + apzp + ap+zp+ + · · · ) × (

 + hz + hz + · · · )
– (β + ip sinα)

(
z–p + apzp + ap+zp+ + · · · + ap+mzp+m + · · · ). (.)

By evaluating the coefficient of zp+m on both sides of (.), we get

eiα(p +m)ap+m = (β – p cosα)(hp+m + aphm + ap+hm– + · · · + ap+m)

– (β + ip sinα)ap+m. (.)

On the other hand, it is well known that

|hk|�  (k ∈N). (.)

From (.) and (.), we easily get

|ap|� β – p cosα
p

(.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/336


Shi et al. Journal of Inequalities and Applications 2013, 2013:336 Page 6 of 12
http://www.journalofinequalitiesandapplications.com/content/2013/1/336

and

|ap+m|� (β – p cosα)
p +m

(
 +

m–∑
k=

|ap+k|
)
. (.)

Suppose that p ∈ N. We define the sequence {Ap+m}∞m= as follows:

⎧⎨
⎩Ap = β–p cosα

p (m = ),

Ap+m = (β–p cosα)
p+m ( +

∑m–
k= Ap+k) (m� ).

(.)

In order to prove that

|ap+m|� Ap+m (m ∈N), (.)

we use the principle of mathematical induction. It is easy to verify that

|ap|� Ap =
β – p cosα

p
. (.)

Thus, assuming that

|ap+j|� Ap+j (j = , , . . . ,m;m ∈ N), (.)

we find from (.) and (.) that

|ap+m+|� (β – p cosα)
p +m + 

(
 +

m∑
k=

|ap+k|
)

� (β – p cosα)
p +m + 

(
 +

m∑
k=

|Ap+k|
)

= Ap+m+ (m ∈N). (.)

Therefore, by the principle of mathematical induction, we have

|ap+m|� Ap+m (m ∈N). (.)

By means of Lemma  and (.), we know that

Ap+m =
(β – p cosα)

β +m + p – p cosα

m∏
k=

β + k + p – p cosα
p + k

(m ∈N). (.)

Combining (.) and (.), we readily get the coefficient estimates (.) asserted by
Theorem . �

From Theorem , we easily get the following result.

http://www.journalofinequalitiesandapplications.com/content/2013/1/336
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Corollary  Let f (z) = z–p +
∑∞

m= ap+mzp+m ∈MCp(α,β). Then

|ap+m|� p(β – p cosα)
(p +m)(β +m + p – p cosα)

m∏
k=

β + k + p – p cosα
p + k

(m ∈N).

Remark  By setting α =  in Theorem , we get the corresponding result due to Wang
et al. [].

Theorem  If f ∈MSp(α,β), then

p cosα – (β – p cosα)r
 – r

� �
(
–eiα

zf ′(z)
f (z)

)
� p cosα + (β – p cosα)r

 + r
(.)

for |z| = r < .

Proof Consider the function ϕ defined by

ϕ(z) :=
peiα – (β – pe–iα)z

 – z
(z ∈U). (.)

Let z = reiθ ( < r < ), we see that

�(
ϕ(z)

)
= p cosα –

(β – p cosα)r(cos θ – r)
 + r – r cos θ

. (.)

Suppose

ψ(t) := p cosα –
(β – p cosα)r(t – r)

 + r – rt
(t := cos θ ), (.)

we easily find that

ψ ′(t) = –(β – p cosα) ·  – r

( + r – rt)
> . (.)

This implies

p cosα –
(β – p cosα)r

 – r
� �(

ϕ(z)
)
� p cosα +

(β – p cosα)r
 + r

, (.)

which is equivalent to

p cosα – (β – p cosα)r
 – r

� �(
ϕ(z)

)
� p cosα + (β – p cosα)r

 + r
. (.)

Noting that –eiα zf ′(z)
f (z) ≺ ϕ(z) and ϕ(z) is univalent in U, we prove the inequality (.).

�

Taking α =  in Theorem , we have the following corollary.

http://www.journalofinequalitiesandapplications.com/content/2013/1/336
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Corollary  If f ∈MSp(,β), then

p – (β – p)r
 – r

� �
(
zf ′(z)
f (z)

)
� p + (β – p)r

 + r

for |z| = r < .

Similar to the proof of Theorem , we get the following result.

Corollary  If f ∈MCp(α,β), then

p cosα – (β – p cosα)r
 – r

� �
(
–eiα

(
 +

zf ′′(z)
f ′(z)

))
� p cosα + (β – p cosα)r

 + r

for |z| = r < .

Corollary  If f ∈MCp(,β), then

p – (β – p)r
 – r

� �
(
 +

zf ′′(z)
f ′(z)

)
� p + (β – p)r

 + r

for |z| = r < .

Now, we present some sufficient conditions for functions belonging to the classes
MSp(α,β) andMCp(α,β).

Theorem  If f ∈MSp(α,β) satisfies the condition

∞∑
n=–p

(∣∣neiα + λ
∣∣ + ∣∣neiα + β – λ

∣∣)|an|� ∣∣peiα – β + λ
∣∣ – ∣∣peiα – λ

∣∣ (.)

for some real α, β and λ (� λ � p cosα), then f ∈MSp(α,β).

Proof To prove f ∈MSp(α,β), it suffices to show that

∣∣∣∣ eiα zf ′(z)
f (z) + λ

eiα zf ′(z)
f (z) + (β – λ)

∣∣∣∣ <  (z ∈U; � λ� p cosα). (.)

From (.), we know that

∣∣peiα – β + λ
∣∣ – ∞∑

n=–p

∣∣neiα + β – λ
∣∣|an|� ∣∣peiα – λ

∣∣ + ∞∑
n=–p

∣∣neiα + λ
∣∣|an| > . (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/336
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Now, by the maximum modulus principle, we deduce from (.) and (.) that

∣∣∣∣ eiα zf ′(z)
f (z) + λ

eiα zf ′(z)
f (z) + (β – λ)

∣∣∣∣ =
∣∣∣∣ (–peiα + λ) +

∑∞
n=–p(neiα + λ)anzn+p

(–peiα + β – λ) +
∑∞

n=–p(neiα + β – λ)anzn+p

∣∣∣∣
<

|peiα – λ| +∑∞
n=–p |neiα + λ||an|

|peiα – β + λ| –∑∞
n=–p |neiα + β – λ||an|

� . (.)

Therefore, if f satisfies the coefficient estimate (.), then we know that f satisfies the
inequality (.). This completes the proof of Theorem . �

Corollary  If f ∈MCp(α,β) satisfies the inequality

∞∑
n=–p

|n|(∣∣neiα + λ
∣∣ + ∣∣neiα + β – λ

∣∣)|an|� p
(∣∣peiα – β + λ

∣∣ – ∣∣peiα – λ
∣∣)

for some real α, β and λ (� λ � p cosα), then f ∈MCp(α,β).

We need the following lemma to prove our next theorem.

Lemma  (See []) Let ϕ be a nonconstant regular function in U. If |ϕ| attains its maxi-
mum value on the circle |z| = r <  at z, then

zϕ′(z) = kϕ(z),

where k �  is a real number.

Theorem  If f ∈MSp(,β) satisfies

∣∣∣∣ + zf ′′(z)
f ′(z)

–
zf ′(z)
f (z)

∣∣∣∣ < β – p
β

(z ∈U) (.)

for some real β > p, then f ∈MSp(,β).

Proof Let us define the function φ by

φ(z) :=
zf ′(z)
f (z) + p

zf ′(z)
f (z) + β – p

(z ∈U), (.)

then we see that φ is analytic in U and φ() = . It follows from (.) that

zf ′(z)
f (z)

=
–p + (β – p)φ(z)

 – φ(z)
. (.)

Differentiating both sides of (.) logarithmically, we obtain

 +
zf ′′(z)
f ′(z)

–
zf ′(z)
f (z)

=
(β – p)zφ′(z)

–p + (β – p)φ(z)
+

zφ′(z)
 – φ(z)

. (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/336
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By virtue of (.) and (.), we find that

∣∣∣∣ + zf ′′(z)
f ′(z)

–
zf ′(z)
f (z)

∣∣∣∣ =
∣∣∣∣ (β – p)zφ′(z)
[–p + (β – p)φ(z)][ – φ(z)]

∣∣∣∣ < β – p
β

. (.)

Suppose that there exists a point z ∈U such that

max
|z|�|z|

∣∣φ(z)∣∣ = ∣∣φ(z)∣∣ = .

Then, Lemma  gives us that φ(z) = eiθ and zφ′(z) = keiθ (k � ). For such a point z, we
have that

∣∣∣∣ + zf ′′(z)
f ′(z)

–
zf ′(z)
f (z)

∣∣∣∣ =
∣∣∣∣ (β – p)keiθ

[–p + (β – p)eiθ ][ – eiθ ]

∣∣∣∣
=

(β – p)k√
p + (β – p) – p(β – p) cos θ

√
 –  cos θ

� β – p
β

. (.)

This contradicts our condition (.). Therefore, there is no z ∈ U such that |φ(z)| = .
This implies that |φ(z)| <  (z ∈U

∗), that is,

∣∣∣∣
zf ′(z)
f (z) + p

zf ′(z)
f (z) + (β – p)

∣∣∣∣ <  (z ∈U).

Thus, we conclude that f ∈MSp(,β). �

Theorem  If f ∈MSp(,β) for some real p < β � p + 
 , then

�
(


zpf (z)

)
>


 – β + p

(z ∈U). (.)

Proof Consider the function η such that


zpf (z)

=
 + ( – γ )η(z)

 – η(z)
(.)

for γ = 
–β+p and f (z) ∈MSp(,β). Then we know that

�
(
–
zf ′(z)
f (z)

)
= �

(
p +

( – γ )zη′(z)
 + ( – γ )η(z)

+
zη′(z)
 – η(z)

)
< β . (.)

Since η(z) is analytic in U and η() = , we suppose that there exists a point z ∈ U such
that

max
|z|�|z|

∣∣η(z)∣∣ = ∣∣η(z)∣∣ = .

http://www.journalofinequalitiesandapplications.com/content/2013/1/336
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Then, applying Lemma , we can write that η(z) = eiθ and zη′(z) = keiθ (k � ). This
gives us that

�
(
–
zf ′(z)
f (z)

)
= �

(
p +

( – γ )keiθ

 + ( – γ )eiθ
+

keiθ

 – eiθ

)

� p –
( – γ )k

γ
–
k


� p +
γ – 
γ

= β , (.)

which contradicts the inequality (.). Therefore, there is no z ∈U such that |η(z)| = .
This means that |η(z)| < , and that

�
(


zpf (z)

)
>


 – β + p

(z ∈U). (.)

The proof of Theorem  is thus completed. �

In view of Theorem , we get the following result.

Corollary  If f ∈MCp(,β) for some real p < β � p + 
 , then

�
(

p
zp+f ′(z)

)
>


 – β + p

(z ∈ U).
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